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Problem 1 (30 points) Quantum Dots

a) Use Bayes’ theorem: p(x|y) = p(x, y)/p(y). We are given p(x, y) so we must first find
p(y).
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∫
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L
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x and y are not statistically independent. You could either point out that p(x, y) = p(x)p(y)
or that p(x|y) depends on y.

b) M η in the shaded region in the figure to the left.
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Problem 2 (30 points) A Real Gas

Use the first law, solve for d/Q, expand dU , set d/Q = 0.

dU = d/Q+ d/W = d/Q− PdV

d/Q = dU + PdV(
∂U
) ((

∂U
= dT + +

∂T V ∂V

)
P

T

)
dV

= (2bV 2/3T ) dT + (−(2/3)aV −5/3 + (2/3)bV −1/3T 2 + (2/3)aV −5/3 + (2/3)bV −1/3T 2) dV

= (2bV 2/3T ) dT + ( (4/3)bV −1/3T 2 ) dV = 0

dV dT
(2/3)T 2 dV = −V T dT → = −(3/2) → ln(V/V0) = (3

V T
− /2) ln(T/T0)

2
V

=
V

(
T

0 T

)−3/

0

2



Problem 3 (40 points) Ultra-relativistic Gas in One Dimension

a)

Φ = (number of choices for s)N ×
[∫ L

dx
0

]N
×
∫

1
dp∑ 1dp2

pi≤E/c
· · · dpN × ~NN !

N

= 2N
1 E 1× LN ×
N !
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c

)
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~NN !( )2 N
1
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(
=

∂E
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N,L

(
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) (
~c

) (
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1b) dE = TdS + FdL → dS = dE
F

T
− dL
T

S = kB ln Ω[ (
2LE 2LE

= kB N ln 2 lnN ! k
~ B N ln 2N lnN + 2N
c

)
−

]
≈

[ (
~c

)
−

]
2 L E

= NkB

[
ln

(
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~c N

)
+ 2

]
which properly extensive

N(
∂S
)

1 1 ()
= = NkB

∂E L T ()E
⇒ E = NkBT

c) (
∂S

=
F 1 ()

= NkB = NkBT/L
∂L

)
E

−
T () L

⇒ F −

d) In b) you found an expression for the entropy of the gas. The entropy will be constant
when the product LE is constant. Replacing E with the expression found later in b) gives
LT is constant on any adiabatic path. Therefore the adiabat passing through the point
(T0, L0) is given by

L T )
=

L0

( 1
( T

T0

)−
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