MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Physics Department

8.044 Statistical Physics I

Spring Term 2013

Solutions to Problem Set \#4

Problem 1: Heat Capacity at Constant Pressure in a Simple Fluid

Start with the first law of thermodynamics.

$$
\not d Q=d U+P d V
$$

The relation for C_{P} we are looking for involves $(\partial U / \partial T)_{P}$ so it is natural to try to do our expansion in terms of the variables T and P. We expand both $d U$ and $d V$ in terms of $d T$ and $d P$.

$$
\begin{gathered}
d U=\left(\frac{\partial U}{\partial T}\right)_{P} d T+\left(\frac{\partial U}{\partial P}\right)_{T} d P \\
d V=\left(\frac{\partial V}{\partial T}\right)_{P} d T+\left(\frac{\partial V}{\partial P}\right)_{T} d P \\
d Q=\left(\left(\frac{\partial U}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P}\right) d T+\left(\left(\frac{\partial U}{\partial P}\right)_{T}+P\left(\frac{\partial V}{\partial P}\right)_{T}\right) d P
\end{gathered}
$$

Since we need the derivative at constant P the second term in the above expression will drop out.

$$
\begin{aligned}
C_{P} & \left.\equiv \frac{d Q}{d T}\right|_{P} \\
& =\left(\frac{\partial U}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P} \\
& =\underline{\left(\frac{\partial U}{\partial T}\right)_{P}+\alpha V P}
\end{aligned}
$$

Problem 2: Heat Supplied to a Gas
To find C_{P} we proceed as follows. Rearrange the first law to isolate ϕQ.

$$
\not d Q=d U+P d V
$$

Expand the differential of the energy in terms of $d T$ and $d V$.

$$
d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V
$$

Substitute into the expression for ϕQ.

$$
d Q=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\left(\frac{\partial U}{\partial V}\right)_{T}+P\right) d V
$$

Form the derivative with respect to T by dividing by $d T$ and specifying the path as one of constant P.

$$
\left.\frac{d Q}{d T}\right|_{P} \equiv C_{P}=\underbrace{\left(\frac{\partial U}{\partial T}\right)_{V}}_{C_{V}}+\left(\left(\frac{\partial U}{\partial V}\right)_{T}+P\right)\left(\frac{\partial V}{\partial T}\right)_{P}
$$

Now use the given information $(\partial U / \partial V)_{T}=0, P V=N k T$, and $C_{V}=(5 / 2) N k$ in the equation above to find that

$$
C_{P}=(7 / 2) N k .
$$

a) It is easy to find the heat along the two rectangular paths by integration.

$$
\begin{aligned}
\Delta Q(a c b) & =\int_{a}^{c} C_{V} d T+\int_{c}^{b} C_{P} d T \\
& =\int_{P_{1}}^{P_{2}} C_{V} \frac{V_{1}}{N k} d P+\int_{V_{1}}^{V_{2}} C_{P} \frac{P_{2}}{N k} d V \\
& =\underline{(19 / 2) N k T_{1}} \\
\Delta Q(a d b) & =\int_{a}^{d} C_{P} d T+\int_{d}^{b} C_{V} d T \\
& =\int_{V_{1}}^{V_{2}} C_{P} \frac{P_{1}}{N k} d V+\int_{P_{1}}^{P_{2}} C_{V} \frac{V_{2}}{N k} d P \\
& =\underline{(17 / 2) N k T_{1}}
\end{aligned}
$$

Before we compute the heat along the diagonal path, it is useful to find the difference in internal energy between b and a. Since the internal energy is a state function, it does not matter what path we use to find it. We already know the heat input ΔQ along the path $a d b$ and the work ΔW is easy to find.

$$
\Delta W(a d b)=\int-P d V=-\int_{V_{a}}^{V_{d}} P_{1} d V=-N k T_{1}
$$

Then the path-independent result for ΔU can be computed along this particular path.

$$
\Delta U=\Delta Q+\Delta W=(17 / 2-2 / 2) N k T_{1}=(15 / 2) N k T_{1}
$$

The work along the diagonal path $a b$ can be calculated by integration using the V dependence of $P: P=\left(P_{1} / V_{1}\right) V$.

$$
\begin{aligned}
\Delta W(a b) & =-\int_{a}^{b} P d V=-\left(P_{1} / V_{1}\right) \int_{V_{1}}^{V_{2}} V d V \\
& =-(1 / 2)\left(P_{1} / V_{1}\right)\left(V_{2}^{2}-V_{1}^{2}\right)=-(3 / 2) P_{1} V_{1}=-(3 / 2) N k T_{1}
\end{aligned}
$$

Finally we can compute the heat supplied along the diagonal path.

$$
\Delta Q=\Delta U-\Delta W=\underline{9 N k T_{1}}
$$

b) Examine the constraint along the diagonal path $a b$.

$$
\begin{aligned}
d Q & =d U+P d V \\
& =\underbrace{\left(\frac{\partial U}{\partial T}\right)_{V}}_{C_{V}} d T+(\underbrace{\left(\frac{\partial U}{\partial V}\right)_{T}}_{0}+P) d V \\
C_{a b} & \left.\equiv \frac{d Q}{d T}\right|_{a b}=C_{V}+\left.P \frac{d V}{d T}\right|_{a b}
\end{aligned}
$$

Along the path $a b$

$$
P=\frac{P_{1}}{V_{1}} V=\frac{N k T}{V} \quad \Rightarrow \quad V^{2}=\frac{V_{1}}{P_{1}} N k T .
$$

So along $a b$ we can construct an expression relating $d V$ to $d T$ by taking the derivative of this expression.

$$
\begin{aligned}
2 V d V & =\frac{V_{1}}{P_{1}} N k d T \\
& \Rightarrow\left(\frac{\partial V}{\partial T}\right)_{a b}=\frac{V_{1}}{P_{1}} \frac{N k}{2 V}
\end{aligned}
$$

Finally

$$
C_{a b}=C_{V}+\frac{V_{1}}{P_{1}} \frac{N k}{2} \underbrace{\frac{P}{V}}_{P_{1} / V_{1}}=C_{V}+(1 / 2) N k=\underline{3 N k} .
$$

As a check we can integrate this heat capacity along the path.

$$
\Delta Q(a b)=\int_{a}^{b} C_{a b} d T=3 N k\left(T_{b}-T_{a}\right)=9 N k T_{1}
$$

This is identical to the result we found above in part a).
Comment: $C_{V}=(5 / 2) N k$ is an approximation to a diatomic gas where the rotational degrees of freedom are contributing to C_{V} but the vibrational degrees of freedom are not (they are frozen out; we will understand why later in the course). If we had used the monatomic result $C_{V}=(3 / 2) N k$ we would have found $C_{P}=(5 / 2) N k, \Delta Q(a c b)=(13 / 2) N k T_{1}, \Delta Q(a d b)=$ $(11 / 2) N k T_{1}, \Delta U=(9 / 2) N k T_{1}, \Delta Q(a b)=6 N k T_{1}$, and $C_{a b}=2 N k$.

Problem 3: Thermodynamics of a Curie Law Paramagnet
All the manipulations we perform here for a simple magnetic system mirror those we carried out in lecture for a simple hydrostatic system.
a) Heat capacities for the generic magnet.

$$
\begin{array}{rlrl}
d U & =\left(\frac{\partial U}{\partial T}\right)_{M} d T+\left(\frac{\partial U}{\partial M}\right)_{T} d M & & \text { expansion } \\
d Q & =d U-\not U=d U-H d M & & \text { first law } \\
& =\left(\frac{\partial U}{\partial T}\right)_{M} d T+\left(\left(\frac{\partial U}{\partial M}\right)_{T}-H\right) d M & & \text { substitution } \\
C_{M} & \left.\equiv \frac{d Q}{d T}\right|_{M}=\left(\frac{\partial U}{\partial T}\right)_{M} \\
C_{H} & \left.\equiv \frac{d Q}{d T}\right|_{H}=\left(\frac{\partial U}{\partial T}\right)_{M}+\left(\left(\frac{\partial U}{\partial M}\right)_{T}-H\right)\left(\frac{\partial M}{\partial T}\right)_{H} & \text { from line above } \\
C_{H}-C_{M} & =\left(\left(\frac{\partial U}{\partial M}\right)_{T}-H\right)\left(\frac{\partial M}{\partial T}\right)_{H} & & \text { from } d Q \\
\left(\frac{\partial U}{\partial M}\right)_{T} & =\frac{C_{H}-C_{M}}{\left(\frac{\partial M}{\partial T}\right)_{H}}+H & & \\
\end{array}
$$

Now substitute into the general expansion of $d U$ to arrive at

$$
d U(T, M)=C_{M}(T, M) d T+\left[\frac{C_{H}(T, M)-C_{M}(T, M)}{\left(\frac{\partial M}{\partial T}\right)_{H}}+H(T, M)\right] d M
$$

b) Now find the results specific to the Curie law paramagnet.

$$
\begin{array}{rlrl}
C_{M} & =b T, \quad\left(\frac{\partial U}{\partial M}\right)_{T}=0 & \text { given } \\
d U & =\underbrace{\left(\frac{\partial U}{\partial T}\right)_{M}}_{C_{M}} d T+\underbrace{\left(\frac{\partial U}{\partial M}\right)_{T}}_{0} d M & \text { expansion } \\
U(T, M) & =\int_{0}^{\int_{T}^{T} b T^{\prime} d T^{\prime}=(1 / 2) b T^{2}+f(M)} & \\
\left(\frac{\partial U}{\partial M}\right)_{T} & =f^{\prime}(M)=0 \text { (given) } \Rightarrow f(M)=\text { constant }=U(T=0) & \\
U(T) & =\frac{(1 / 2) b T^{2}+\overbrace{U(T=0)}}{} & \\
\left(\frac{\partial M}{\partial T}\right)_{H} & =\frac{\partial}{\partial T}\left(\frac{a H}{T}\right)_{H}=-\frac{a H}{T^{2}} & & \\
C_{H}-C_{M} & =(0-H)\left(-\frac{a H}{T^{2}}\right)=\frac{a H^{2}}{T^{2}}=\frac{M^{2}}{a} & \text { from eq. of state } \\
C_{H}(T, M) & =b T+\frac{M^{2}}{a} & \text { from a) } \\
\end{array}
$$

c) Here we practice working with an alternative pair of independent variables.

$$
\begin{aligned}
d U & =\left(\frac{\partial U}{\partial H}\right)_{M} d H+\left(\frac{\partial U}{\partial M}\right)_{H} d M & \text { expansion } \\
d Q & =d U-H d M=\left(\frac{\partial U}{\partial H}\right)_{M} d H+\left(\left(\frac{\partial U}{\partial M}\right)_{H}-H\right) d M & \text { first law and substitution } \\
C_{M} & \left.\equiv \frac{d Q}{d T}\right|_{M}=\left(\frac{\partial U}{\partial H}\right)_{M}\left(\frac{\partial H}{\partial T}\right)_{M} & \text { dividing the above by } d T \\
\left(\frac{\partial H}{\partial T}\right)_{M} & =\frac{-1}{\left(\frac{\partial T}{\partial M}\right)_{H}\left(\frac{\partial M}{\partial H}\right)_{T}}=-\frac{\left(\frac{\partial M}{\partial T}\right)_{H}}{\chi_{T}} & \text { chain rule } \\
C_{M} & =-\frac{1}{\chi_{T}}\left(\frac{\partial U}{\partial H}\right)_{M}\left(\frac{\partial M}{\partial T}\right)_{H} & \text { substitution } \\
\left(\frac{\partial U}{\partial H}\right)_{M} & =-\frac{C_{M} \chi_{T}}{\left(\frac{\partial M}{\partial T}\right)_{H}} & \text { rearrangement of above } \\
C_{H} & \left.\equiv \frac{d Q}{d T}\right|_{H}=\left(\left(\frac{\partial U}{\partial M}\right)_{H}-H\right)\left(\frac{\partial M}{\partial T}\right)_{H} & \text { from } \phi Q \text { expression } \\
\left(\frac{\partial U}{\partial M}\right)_{H} & =\frac{C_{H}}{\left(\frac{\partial M}{\partial T}\right)_{H}}+H & \text { rearrangement of above }
\end{aligned}
$$

Now substitute into the general expansion of $d U(H, M)$ to arrive at

$$
d U(H, M)=-\frac{C_{M}(H, M) \chi_{T}(H, M)}{\left(\frac{\partial M}{\partial T}\right)_{H}} d H+\left[\frac{C_{H}(H, M)}{\left(\frac{\partial M}{\partial T}\right)_{H}}+H\right] d M
$$

Note that the coefficient of the $d M$ term in the expansion of $d U(H, M)$ found here is different from the coefficient of the $d M$ term in the expansion of $d U(T, M)$ found in part a).
d) Now we use the equation of state associated with a Curie law paramagnet.

$$
\begin{aligned}
\chi_{T} & \equiv\left(\frac{\partial M}{\partial H}\right)_{T}=\frac{\partial}{\partial H}\left(\frac{a H}{T}\right)_{T}=\frac{a}{T} \\
\left(\frac{\partial M}{\partial T}\right)_{H} & =-\frac{a H}{T^{2}} \\
d U(H, M) & =\underbrace{\left(-\frac{b T \frac{a}{T}}{-\frac{a H}{T^{2}}}\right)}_{b T^{2} / H} d H+\underbrace{\left(\frac{b T+a \frac{H^{2}}{T^{2}}}{-\frac{a H}{T^{2}}}+H\right)}_{-b T^{2} / M} d M \\
& =\frac{b T^{2}}{H} d H-\frac{b T^{2}}{M} d M \\
& =\frac{b a^{2} H}{M^{2}} d H-\frac{b a^{2} H^{2}}{M^{3}} d M \\
U(H, M) & =\frac{b a^{2} \frac{H^{2}}{2} \frac{M^{2}}{M^{2}}+f(M)}{} \\
\left(\frac{\partial U}{\partial M}\right)_{H} & =-\frac{b a^{2} H^{2}}{M^{3}}+f^{\prime}(M)
\end{aligned}
$$

Comparison with the coefficient of $d M$ in the differential form $d U(H, M)$ above shows that $f^{\prime}(M)=0$ which, when integrated, gives $f=$ constant. Thus we can write

$$
U(H, M)=\frac{b a^{2}}{2} \frac{H^{2}}{M^{2}}+\mathrm{constant}
$$

There is no reason to carry around a constant term in the internal energy which never responds to any change in the independent variables, so we are free to set the constant equal to zero.

$$
U(H, M)=\frac{b a^{2}}{2} \frac{H^{2}}{M^{2}}
$$

By using the equation of state, $M=a H / T$, we see that this reduces to the same result obtained in b), that is $U=(b / 2) T^{2}$.
e) We are looking for the adiabatic constraint on $d T$ and $d M$.

$$
\begin{array}{rlr}
d Q & =\underbrace{\left(\frac{\partial U}{\partial T}\right)_{M} d T+\left(\left(\frac{\partial U}{\partial M}\right)_{T}-H\right) d M=0}_{C_{M}} & \text { for an adiabatic path } \\
C_{M} d T & =-\left(\left(\frac{\partial U}{\partial M}\right)_{T}-H\right) d M & \\
& \Rightarrow \frac{\text { by rearrangement }}{\left.\frac{d T}{d M}\right|_{\Delta Q=0}=-\frac{\left(\left(\frac{\partial U}{\partial M}\right)_{T}-H\right)}{C_{M}}} &
\end{array}
$$

This gives the slope of an adiabatic path for any magnetic system.
f) Next we specialize to the case of a Curie law paramagnet.

$$
\begin{array}{rlrl}
\left(\frac{\partial U}{\partial M}\right)_{T} & =0, \quad C_{M}=b T & \text { Curie law paramagnet } \\
\left.\frac{d T}{d M}\right|_{\Delta Q=0} & =-\frac{(0-H)}{b T}=\frac{H}{b T}=\frac{M}{a b} & & \text { using the general result from e) }
\end{array}
$$

$$
\begin{aligned}
d T & =\frac{1}{a b} M d M & & \text { after rearrang } \\
\left(T-T_{0}\right) & =\frac{1}{2 a b}\left(M^{2}-M_{0}^{2}\right) & & \text { integration }
\end{aligned}
$$

$$
\left(T-T_{0}\right)=\frac{1}{\underline{2 a b}}\left(M-M_{0}\right)\left(M+M_{0}\right)
$$

g) An isothermal path in the $H M$ plane is easy to picture from the given equation of state, $M=a H / T$. It is a straight line going through the origin with slope $(\partial M / \partial H)_{T}=a / T$. This is shown in the figure accompanying the statement of the problem. In part f) we found the relation which must hold between $d T$ and $d M$ along an adiabatic path: $d T=(1 / a b) M d M$. In order to explore an adiabatic path in the $H M$ plane we must express $d T$ in terms of $d M$ and $d H$.

$$
\begin{array}{rlrl}
T & =\frac{a H}{M} & \text { equation of state } \\
d T & =\frac{a}{M} d H-\frac{a H}{M^{2}} d M & & \text { differential of above }
\end{array}
$$

Substitute this general expression for $d T$ into the adiabatic path derivative and separate the $d H$ and $d M$ terms.

$$
\begin{aligned}
(1 / a b) M d M & =\frac{a}{M} d H-\frac{a H}{M^{2}} d M \\
d H & =\left(\frac{1}{a^{2} b} M^{2}+\frac{H}{M}\right) d M=\left(\frac{M^{2}}{a^{2} b}+\frac{T}{a}\right) d M=\frac{T}{a}\left(1+\frac{M^{2}}{a b T}\right) d M
\end{aligned}
$$

This allows us to find the slope of an adiabatic line in the $H M$ plane in terms of the quantity a / T which is the slope of an isotherm.

$$
\left.\frac{d M}{d H}\right|_{\Delta Q=0}=\frac{a}{T}\left(\frac{1}{1+\frac{M^{2}}{a b T}}\right)<\frac{a}{T}
$$

Note that the slope of the adiabatic path is less than that of the isothermal path going through the same point.

Problem 4: Classical Magnetic Moments
a)

$$
\begin{aligned}
-\mu \leq \quad m_{i} & \leq \mu \\
-\mu N \leq M & \leq \mu N \\
-N(\mu H) \leq \quad E & \leq N(\mu H)
\end{aligned}
$$

b) There are $2 N$ microscopic variables necessary to specify the state of the system. Some possibilities include the x and z component of each spin, the z component and the angle in the $x y$ plane for each spin, or the polar angles θ and ϕ for each spin.
c)

$$
\begin{array}{rlr}
\frac{H}{T} & =-\left(\frac{\partial S}{\partial M}\right)_{N}=-k \frac{1}{\Omega}\left(\frac{\partial \Omega}{\partial M}\right)_{N} & \text { using } S=-k \ln \Omega \\
& =-k \frac{1}{\Omega}\left(-\frac{2 M}{(2 / 3) \mu^{2} N}\right) \Omega=k\left(\frac{M}{(1 / 3) N \mu^{2}}\right) & \\
& \Rightarrow M(H, T)=\left(\frac{N \mu^{2}}{3 k}\right) \frac{H}{T} & \text { the Curie law result }
\end{array}
$$

d) The expression found in c) allows M to grow without bound as $T \rightarrow 0$. But $|M|$ is bounded by μN. Thus the expression can only be trusted as an approximation when

$$
\begin{aligned}
M(H, T) & \ll \mu N \\
\frac{N \mu^{2}}{3 k T} & \ll \mu N \\
& \Rightarrow k T \gg(1 / 3) \mu H
\end{aligned}
$$

This result says that the "thermal energy", $k T$, must be much greater than the maximum energy allowable for a single spin.
e) To find Ω^{\prime} reduce N by 1 and reduce M by m.

$$
\Omega^{\prime}=(2 \mu)^{N-1} \exp \left[-\frac{(M-m)^{2}}{(2 / 3)(N-1) \mu^{2}}\right]
$$

f)

$$
\begin{aligned}
& p(m)=\frac{\Omega^{\prime}}{\Omega}=\frac{(2 \mu)^{N-1}}{(2 \mu)^{N}} \frac{\exp \left[-\frac{(M-m)^{2}}{(2 / 3)(N-1) \mu^{2}}\right]}{\exp \left[-\frac{M^{2}}{(2 / 3) N \mu^{2}}\right]} \\
&=\frac{1}{2 \mu} \exp \left[-\frac{M^{2}-2 M m+m^{2}}{(2 / 3)(N-1) \mu^{2}}\right] \exp \left[\frac{M^{2}}{(2 / 3) N \mu^{2}}\right] \\
& \approx \frac{1}{2 \mu} \exp \underbrace{\left[\frac{3 m M}{N \mu^{2}}\right]} \\
& \approx \frac{1}{2 \mu}\left(1+\left(\frac{3 M}{N \mu^{2}}\right) m\right)-\mu \leq m \leq \mu \\
& \quad \frac{\operatorname{small} \text { since } M \ll \mu N}{-\mu} \mathrm{p}(\mathrm{~m}) \\
& \quad \frac{\mathrm{m}}{-\mu} \mathrm{m}
\end{aligned}
$$

Now check the normalization.

$$
\begin{aligned}
\int_{-\mu}^{\mu} p(m) d m & =\int_{-\mu}^{\mu} \frac{1}{2 \mu} d m+\int_{-\mu}^{\mu} \frac{3 M}{2 N \mu^{3}} m d m \\
& =1+0=1
\end{aligned}
$$

g)

$$
\begin{aligned}
<m> & =\int p(m) m d m \\
& =\underbrace{\int_{-\mu}^{\mu} \frac{1}{2 \mu} m d m}_{=0}+\int_{-\mu}^{\mu} \frac{3 M}{2 N \mu^{3}} m^{2} d m \\
& =\frac{3 M}{2 N \mu^{3}}\left[_{-\mu}^{\mu} \frac{1}{3} m^{3}=\underline{\frac{M}{N}}\right.
\end{aligned}
$$

This tells us that the total magnetization M is N times the average moment of an individual dipole, the result that one would expect on physical grounds.

Problem 5: A Strange Chain
a) The number of ways of choosing n_{+}elements from a total of N is $N!/\left(N-n_{+}\right)!n_{+}!$. It follows that

$$
\begin{aligned}
\Omega\left(N, n_{+}\right) & =\frac{N!}{\left(N-n_{+}\right)!n_{+}!} \\
S\left(N, n_{+}\right) & =k \ln \Omega \\
& \approx k\{N \ln N-\left(N-n_{+}\right) \ln \left(N-n_{+}\right)-n_{+} \ln n_{+} \underbrace{-N+\left(N-n_{+}\right)+n_{+}}_{=0}\} \\
& =k\left\{N \ln N-\left(N-n_{+}\right) \ln \left(N-n_{+}\right)-n_{+} \ln n_{+}\right\}
\end{aligned}
$$

b)

$$
\begin{aligned}
\frac{\mathcal{F}}{T} & =-\left(\frac{\partial S}{\partial L}\right)_{N, E} \\
& =-\frac{\partial S}{\partial n_{+}} \underbrace{\frac{\partial n_{+}}{\partial L}}_{1 / 2 l} \\
& =-\frac{k}{2 l}\left\{\frac{N-n_{+}}{N-n_{+}}+\ln \left(N-n_{+}\right)-\frac{n_{+}}{n_{+}}-\ln n_{+}\right\} \\
-\frac{2 l \mathcal{F}}{k T} & =\ln \left(\frac{N-n_{+}}{n_{+}}\right) \\
\mathcal{F}\left(N, T, n_{+}\right) & =-\frac{k T}{2 l} \ln \left(\frac{N-n_{+}}{n_{+}}\right)
\end{aligned}
$$

c) Now rearrange the last result, take the exponential of both sides and solve for n_{+}.

$$
\begin{aligned}
\exp [-2 l \mathcal{F} / k T] & =\frac{N-n_{+}}{n_{+}} \\
n_{+} & =N \frac{1}{1+\exp [-2 l \mathcal{F} / k T]}
\end{aligned}
$$

Next, use the expression for n_{+}to find L.

$$
\begin{aligned}
L & =l\left(2 n_{+}-N\right)=N l\left(\frac{2}{1+\exp []}-\frac{1+\exp []}{1+\exp []}\right) \\
& =N l \frac{1-\exp [-2 l \mathcal{F} / k T]}{1+\exp [-2 l \mathcal{F} / k T]} \\
& =N l \frac{\exp [l \mathcal{F} / k T]-\exp [-l \mathcal{F} / k T]}{\exp [l \mathcal{F} / k T]+\exp [-l \mathcal{F} / k T]} \\
& =N l \tanh (l \mathcal{F} / k T)
\end{aligned}
$$

For high temperatures, where $k T \gg l \mathcal{F}, \tanh x \rightarrow x$ for small x, so

$$
L \approx\left(\frac{N l^{2}}{k T}\right) \mathcal{F}
$$

The fact that the length L is proportional to the tension \mathcal{F} shows that Hooke's law applies to this system, at least for high temperatures.
d)

$$
\begin{aligned}
\alpha & \equiv L^{-1}\left(\frac{\partial L}{\partial T}\right)_{\mathcal{F}} \\
& =\frac{1}{L}\left(-\frac{1}{T}(L)\right) \\
& =-\frac{1}{T}
\end{aligned}
$$

Problem 6: Classical Harmonic Oscillators

a) In x space

$$
E=\sum_{i=1}^{2 N} x_{i}^{2}
$$

is a sphere in $2 N$ dimensions with radius \sqrt{E}. Its volume is $\pi^{N} E^{N} / N$!. The corresponding volume in $p q$ space is

$$
\begin{aligned}
\Omega(E, N) & =\frac{\pi^{N}}{N!}(\sqrt{2 m})^{N}\left(\sqrt{\frac{2}{m \omega^{2}}}\right)^{N} E^{N} \\
& =\left(\frac{2 \pi}{\omega}\right)^{N} \frac{1}{N!} E^{N}
\end{aligned}
$$

b)

$$
S(E, N)=k \ln \Omega(E, N)=k \ln \left\{\left(\frac{2 \pi}{\omega}\right)^{N} \frac{1}{N!} E^{N}\right\}
$$

c)

$$
\begin{aligned}
\frac{1}{T} & =\left(\frac{\partial S}{\partial E}\right)_{N}=k \frac{N E^{-1}\{ \}}{\{ \}}=\frac{N k}{E} \\
& \Rightarrow \underline{E=N k T \quad} \quad \underline{C_{N}=N k}
\end{aligned}
$$

d) Let Ω^{\prime} be the volume in a phase space for $N-1$ oscillators of total energy $E-\epsilon$ where $\epsilon=(1 / 2 m) p_{i}^{2}+\left(m \omega^{2} / 2\right) q_{i}^{2}$. Since the oscillators are all similar, $\langle\epsilon\rangle=E / N=k T$.

$$
\begin{aligned}
p\left(p_{i}, q_{i}\right) & =\Omega^{\prime} / \Omega \\
\Omega^{\prime} & =\left(\frac{2 \pi}{\omega}\right)^{N-1} \frac{1}{(N-1)!}(E-\epsilon)^{N-1} \\
\frac{\Omega^{\prime}}{\Omega} & =\left(\frac{2 \pi}{\omega}\right)^{-1} \frac{N!}{(N-1)!}\left(\frac{E-\epsilon}{E}\right)^{N} \frac{1}{E-\epsilon} \\
& =\frac{\omega}{2 \pi} \underbrace{\frac{N}{E-\epsilon}}_{\approx<\epsilon>^{-1}} \underbrace{\left(1-\frac{\epsilon}{E}\right)^{N}}_{\approx \exp [-\epsilon /<\epsilon>]} \\
p\left(p_{i}, q_{i}\right) & =\frac{1}{(2 \pi / \omega)<\epsilon>} \exp [-\epsilon /<\epsilon>] \\
& =\frac{1}{(2 \pi / \omega) k T} \exp \left[-p_{i}^{2} / 2 m k T\right] \exp \left[-\left(m \omega^{2} / 2 k T\right) q_{i}^{2}\right] \\
& =\left(\frac{1}{\sqrt{2 \pi m k T}} \exp \left[-p_{i}^{2} / 2 m k T\right]\right)\left(\frac{1}{\sqrt{2 \pi\left(k T / m \omega^{2}\right)}} \exp \left[-q_{i}^{2} / 2\left(k T / m \omega^{2}\right)\right]\right) \\
& =p\left(p_{i}\right) \times p\left(q_{i}\right) \Rightarrow p_{i} \text { and } q_{i} \operatorname{are} \text { S.I. }
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

