
Chapter 9 

The Boundary at Infinity 

Although the wave phenomena we can see in the laboratory live in finite regions of space, 
it is often convenient to analyze them as if the traveling waves come in from and go out 
to infinity. We have described traveling waves in infinite translation invariant systems. But 
traveling waves are more complicated and more interesting in systems in which there are 
boundaries that break the translation symmetry. 

Preview 

In this chapter, we introduce a new kind of “boundary condition” in systems that lack a bound-
ary! It will enable us to discuss reflection and transmission, and in general, the phenomenon 
of scattering. 

i. We discuss forced oscillation problems in semi-infinite systems, that extend to infinity 
in one direction. We show that we can impose a “boundary condition” even though 
there is no boundary, by specifying the amplitude of a wave traveling in one direction. 
We then discuss scattering problems in infinite systems, describing the amplitudes for 
transmission and reflection. We study the motion of a general wave with definite fre-
quency. 

ii. We discuss electromagnetic plane waves in a dielectric. 

iii. We discuss reflection and transmission by a mass on a string and two masses on a 
string, showing how to use a “transfer matrix” to simplify the solution to the scatter-
ing problem. We analyze reflection from a boundary between regions with different 
wave number and show how to eliminate the reflection with a suitable “nonreflective 
coating.” 
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9.1 Reflection and Transmission 

9.1.1 Forced Oscillation 

Consider the forced oscillation problem in a semiinfinite stretched string that runs from x = 0 
to x = ∞. Suppose that 

ψ(0, t) = A cos ωt . (9.1) 

Then what is ψ(x, t)? This is not a well-posed problem, because we only have a boundary 
condition on one side. Furthermore, ψ(∞, t) does not have a definite value. We can only 
talk about the value of a function at infinity if the function goes to a constant value. Here, we 
expect ψ(x, t) to continue to oscillate as x → ∞, so we cannot specify it. Instead, we can 
specify either the incoming (traveling toward the boundary at x = 0 in the −x direction) or 
the outgoing (traveling away from x = 0 in the +x direction) traveling waves in the system. 
This is called a “boundary condition at ∞.” 

For example, we could take our boundary condition at infinity to be that no incoming 
traveling waves appear on the string. Physically, this corresponds to the situtation in which 
the motion of the string at x = 0 is producing the waves. In general, we can write a solution 
with angular frequency ω as a sum of four real traveling waves 

ψ(x, t) = a cos(kx − ωt) + b sin(kx − ωt) 
(9.2) 

+c cos(kx + ωt) + d sin(kx + ωt) . 

Then (9.1) implies 
a + c = A , b − d = 0 , (9.3) 

and the boundary condition at ∞ implies 

c = d = 0 . (9.4) 

Thus 
ψ(x, t) = A cos(kx − ωt) . (9.5) 

9.1.2 Infinite Systems 

Now consider two semi-infinite strings with the same tension but different densities that are 
tied together at x = 0, as shown in figure 9.1. Suppose that in the x ≤ 0 region (Region I), 
there is an incoming traveling wave with amplitude A and angular frequency ω, and in the 
x ≥ 0 region (Region II), there is no incoming traveling wave. This describes a physical 
situation in which the incoming wave in I is scattered by the boundary so that the other waves 
are a transmitted wave in II and a reflected wave in I, both outgoing. 
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Region I Region II 

incoming wave → x = 0 transmitted wave → 

← reflected wave 

Figure 9.1: Two semi-infinite strings tied together at x = 0. 

The key to this problem is to think of it as a forced oscillation problem. The incoming 
traveling wave in region I is what is “causing” all the oscillations. We have put the word in 
quotes, because the harmonic form, e−iωt, for the oscillation implies that it has been going 
on forever, so that a philosopher might question this use of cause and effect. Nevertheless, 
it will help us to think of it this way. If the reflected and transmitted waves are produced by 
the incoming wave, their amplitudes will also be proportional to e−iωt. As in a conventional 
forced oscillation problem, we could add on any free oscillations of the system. However, if 
there is any friction at all, these will die away with time, and we will be left only with the 

−iωt oscillation produced by the incoming traveling wave, proportional to e . The important 
thing is that the frequency is the same in both regions, because as in a forced oscillation 
problem, the frequency is imposed on the system by an external agency, in this case, whatever 
produced the incoming traveling wave. 

In our complex exponential notation in which everything has the irreducible time depen-
ikx −ikx −iωt dence, e−iωt. Right moving waves are ∝ e e−iωt and left moving waves are ∝ e e . 

In this case, the boundary conditions at ±∞ require that 

−iωt ψ(x, t) = e ikx Ae−iωt + R Ae−ikx e (9.6) 

for x ≤ 0 in Region I, and 
x −iωt ψ(x, t) = τ Aeik0 e (9.7) 

for x ≥ 0 in Region II. The k and k0 are 

k0k = ω 
q

ρI /T , = ω 
q

ρII /T , (9.8) 

and R and τ are (in general) complex numbers that determine the reflected and transmitted 
waves. They are sometimes called the “reflection coefficient” and “transmission coefficient,” 
or the “amplitudes” for transmission and reflection. Notice that we have defined the reflection 
and transmission coefficients by taking out a factor of the amplitude, A, of the incoming 
wave. The amplitude, A, then drops out of all the boundary conditions, and the dimensionless 
coefficients R and τ are independent of A. This must be so because of the linearity of the 
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system. We know that once we have found the solution, ψ(x, t), for an incoming amplitude, 
A, we can find the solution for an incoming amplitude, B, by multiplying our solution by 
B/A. We will keep the parameter, A, in our expressions for ψ(x, t), mostly in order to keep 
the units right. A has units of length in this example, but in general, the amplitude of the 
incoming wave will have units of generalized displacement (as in (1.107) and (1.108)). 

To determine R and τ , we need a boundary condition at x = 0 where (9.6) and (9.7) 
meet. Clearly ψ(x, t) must be continuous at x = 0, thus 

1 + R = τ . (9.9) 

We have canceled the common factor of Ae−iωt from both sides. The x derivative must also 
be continuous (for a massless knot) because the vertical forces on the knot must balance, thus 

ik(1 − R) = ik0τ . (9.10) 

Solving for R and τ gives 

2 1 − k0/k
τ = , R = . (9.11)

1 + k0/k 1 + k0/k 

9.1.3 Impedance Matching 

Note that we could replace the string in Region II by a dashpot with the same impedance, 
ZII . This must be true because of the local nature of the interactions. The only thing that the 
string for x < 0 knows about the string for x > 0 is that it exerts a force at x = 0 equal to 

− ZII 
∂

ψ(0, t) . (9.12)
∂t 

Thus we also learned what happens when an incoming wave encounters a dashpot with the 
wrong impedance. The amplitude of the reflected wave is given by R in (9.11). 

The reflected wave in (9.11) vanishes if k = k0 . If k = k0, then ρI = ρII (from (9.8)), 
and the impedance in region I is the same as the impedance in region II. This is a simple 
example of the important principle of “impedance matching.” There is no reflection if the 
impedance of the system in region II is the same as the impedance of the system in region I. 
The argument is the same as for the dashpot in the previous paragraph. What matters in the 
computation of the reflection coefficient are the forces that act on the string at x = 0. Those 
forces are determined by the impedances in the two regions. Nothing else matters. Consider, 
for example, the system shown in figure 9.2 of two semi-infinite strings connected at x = 0 
to a massless ring which is free to slide in the vertical direction on a frictionless rod. The 
rod can exert a horizontal force on the ring, so the tensions in the two strings need not be the 
same. In such a system, we can change both the density and the tension in the string from 
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region I to region II. There will be no reflection so long as the product of the linear mass 
density and the tension (and thus the impedance, from (8.22)) is the same in both regions, 

ZI = 
p

ρI TI = 
p

ρII TII = ZII . (9.13) 

Region I x = 0 Region II 

incoming wave → transmitted wave → 
e 

← reflected wave 

Figure 9.2: A system in which impedances can be matched. 

It is instructive to solve the scattering problem completely for the more general case 
shown in figure 9.2. This will give us a feeling for the meaning of impedance. The form of 
the solution, (9.6) and (9.7) is unchanged, but now the angular wave numbers satisfy 

k0k = ω 
q

ρI /TI , = ω 
q

ρII /TII . (9.14) 

The boundary condition at x = 0 arising from the continuity of the string, (9.9), remains 
unchanged. However, (9.10) arose from the fact that the forces on the massless knot must 
sum to zero so the acceleration is not infinite. In this case, from (8.21), the contribution of 
each component of the wave to the total force is proportional to plus or minus the impedance 
in the relevant region depending on whether it is moving in the +x or the −x direction. Thus 
the boundary condition is 

ZI (1 − R) = ZII τ . (9.15) 

Then the reflection and transmission coefficients are 

2ZI ZI − ZII 
τ = , R = . (9.16)

ZI + ZII ZI + ZII 

We have already discussed the case where the impedances match and the reflection coef-
ficient vanishes. It is also interesting to look at the limits in which R = ±1. First consider 
the limit in which the impedance in region II goes to infinity, 

lim R = −1 . (9.17) 
ZII →∞ 

This is situation in which it takes an infinite force to produce a wave in region II. Thus the 
string in region II does not move at all, and in particular, the point x = 0 might as well be a 
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fixed end. The solution, (9.17) ensures that the string does not move at x = 0, and therefore 
that the solution in region I is ψ(x, t) ∝ sin kx. This solution is an infinite standing wave 
with a fixed end boundary condition. 

In the opposite limit, in which the impedance in region II is zero, we get 

lim R = 1 . (9.18) 
ZII →0 

This time, it takes no force at all to produce a wave in region II. Thus the end of region I 
at x = 0 feels no transverse force. It acts like a free end. The solution, (9.18) ensures that 
ψ(x, t) ∝ cos kx in region I, so the slope of the string vanishes at x = 0. This solution is an 
infinite standing wave with a free end boundary condition. 

9.1.4 Looking at Reflected Waves 

.............................
...............................................................................
........
............................................................................................................................................ 9-1..... ... .. 

In this section, we discuss what the displacement in Region I looks like. We will find a useful 
diagnostic for the presence of reflection. We will also conclude that standing waves are very 
special. 

Look at a wave of the form 

A cos(kx − ωt) + R A cos(kx + ωt) . (9.19) 

This describes an incoming traveling wave with some reflected wave of amplitude R (we 
could put in an arbitrary phase for the reflected wave but it would complicate the algebra 
without changing the physics). 

For R = ±1, this is a standing wave. For R = 0, it is a traveling wave. To see how 
the system interpolates between these two extremes, consider the motion of the crest of the 
wave, a maximum of (9.19). 

To find the maximum, we differentiate with respect to x and set the result to zero. Elimi-
nating the irrelevant factor of A, we get 

sin(kx − ωt) + R sin(kx + ωt) = 0 , (9.20) 

or 
(1 + R) sin kx cos ωt = (1 − R) cos kx sin ωt , (9.21) 

or 
1 − R 

tan kx = tan ωt . (9.22)
1 + R 

(9.22) describes (implicitly — we could solve for x as a function of t if we felt like it) the 
motion of the maximum as a function of time. We can differentiate it to get the velocity: 

∂x 1 − R ω 
k 

³ 
1 + tan2 kx 

´ 
= . (9.23)

∂t 1 + R cos2 ωt 
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We have left 
¡
1 + tan2 kx

¢ 
in (9.23) so that we can eliminate it by using (9.22). Thus 

∂x 1 − R ω 1 
= 

∂t 1 + R k (1 + tan2 kx) cos2 ωt 
1 − R ω 1 

= 
1 + R k 

µ
1 + 

³ 
1−R ́ 2 

tan2 ωt

¶ 

cos2 ωt 
(9.24) 

1+R 

(1 + R)(1 − R)
= v 

(1 + R)2 cos2 ωt + (1 − R)2 sin2 ωt 

where v = ω/k is the phase velocity. When sin ωt vanishes, the speed of the maximum is 
smaller than the phase velocity by a factor of 

1 − R 
, (9.25)

1 + R 

while when cos ωt vanishes, the speed is larger than the v by the inverse factor, 

1 + R 
. (9.26)

1 − R 

The wave thus appears to move in fits and starts. You can easily see this effect if you stare at 
a system with a lot of reflection. The effect is illustrated in program 9-1. 

We can draw a more general moral from this discussion. The general case of wave motion 
is much more like a traveling wave than like a standing wave. Generically, except for R = 
±1, the wave crests move with time. As we approach R = ±1, one of the two velocities 
in (9.25) and (9.26) goes to zero and the other goes to infinity. What happens when you are 
close to R = ±1 is then that the wave stays nearly still most of the time, and then moves 
very quickly to the next nearly stationary position. A standing wave is thus a degenerate 
special case of a traveling wave in which this motion is unobservable because, in a sense, it 
is infinitely fast. 

9.1.5 Power and Reflection 

It is instructive to consider the power required to produce a traveling wave that is partially 
reflected. That is, we consider the power required by a transverse force acting at x = 0 to 
produce a wave in the region x > 0 that is a linear combination of an outgoing wave moving 
in the +x direction and an incoming wave moving in the −x direction, such as might be 
produced by a reflection at some large value of x. Let us imagine the most general one-
dimensional case, in a medium with impedance Z: 

ψ(x, t) = Re 
³ 
A+e i(kx−ωt) + A−e i(−kx−ωt) ́

 

(9.27) 
= R+ cos(kx − ωt + φ+) + R− cos(−kx − ωt + φ−) 
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where R± and φ± are the absolute value and phase of the amplitude A±. The velocity is 

∂
ψ(x, t) = ωR+ sin(kx − ωt + φ+) + ωR− sin(−kx − ωt + φ−) . (9.28)

∂t 
Now because (9.27) involves waves traveling both in the +x and in the −x direction, we 
cannot find the force required to produce the wave at the point x by simply multiplying (9.28) 
by the impedance, Z. However, we can use linearity. We can write ψ(x, t) = ψ+(x, t) + 
ψ−(x, t), where ψ±(x, t) is the wave moving in the ±x direction. Then from (8.21), the force 
required to produce ψ+ is 

F+(t) = Z 
∂ 
∂t 

ψ+(0, t) (9.29) 

while the force required to produce ψ− is 

F−(t) = −Z 
∂ 
∂t 

ψ−(0, t) . (9.30) 

Then the total force required to produce ψ is 

F (t) = F+(t) + F−(t) 
(9.31) 

= ZωR+ sin(−ωt + φ+) − ZωR− sin(−ωt + φ−) . 

Thus the power required is 

P (t) = F (t) 
∂

ψ(x, t)
∂t 

¯̄
¯̄
 
x=0 (9.32) 

= Zω2R2 sin2(−ωt + φ+) − Zω2R2 
− sin

2(−ωt + φ−) .+ 

The average power is then given by 

1 1 
= Zω2(R2 − R2 ) = Zω2 

³ 
|A+|2 − |A−|2 ́

 
. (9.33)Paverage + −2 2

The result, (9.32), has an obvious and important physical interpretation. Positive power is 
required to produce the outgoing traveling wave, while the incoming wave gives energy back 
to the system, and thus requires negative power. The power required to produce a general 
traveling wave is thus proportional to the difference of the squares of the absolute values 
of the amplitudes of the outgoing and incoming waves. 

Note also that we can apply this discussion to the example of reflection at a boundary, 
discussed above. We can check that energy is conserved in this scattering. The average power 
required to produce the wave in region I is, from (9.33) 

ZI ω
2 − ZI ω

2 R2 . (9.34) 

The average power required to produce the wave in region II is, 

ZII ω
2τ 2 . (9.35) 

Using (9.16), you can check that these are equal. 
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9.1.6 Mass on a String 

.............................
...............................................................................
........
............................................................................................................................................ 9-2..... ... .. 

x = 0 
1 → τ → 

t 

← R 

Figure 9.3: A mass on a string. 

Consider the transmission and reflection of waves from a mass, m, at x = 0 on a string 
with linear mass density ρ and tension T , stretched from x = −∞ to x = ∞, shown in 
figure 9.3. Before we calculate the coefficients for reflection and transmission, let us guess 
the result in two extreme limits. 

m small – Here we expect that the reflection to be small and the transmission close to one, 
because in the limit 

m → 0 ⇒ τ → 1 and R → 0 . (9.36) 

m large – Here we expect the transmission to be small and the reflection close to −1, be-
cause in the limit 

m →∞⇒ τ → 0 and R → −1 . (9.37) 

“Large or small compared to what?” you ask! That we can answer by dimensional analysis. 
The relevant dimensional parameters are m, ω, k, ρ and T . However, one of these is not 
independent, because of the dispersion relation, (6.5). If we use (6.5) to eliminate T , then ω 
cannot be relevant to the question, because it is the only thing left that involves the unit of 
time. The only dimensionless quantity we can build is 

mk mω2 

² = = . (9.38)
ρ k T 

Now that we have guessed, we can do the calculation. It follows from translation invari-
ance and the boundary condition at x = ∞ that 

ψ(x, t) = Aeikx e −iωt + R Ae−ikx e −iωt for x ≤ 0 (9.39) 

ψ(x, t) = τ Aeikx e −iωt for x ≥ 0 (9.40) 

where, as usual, R and τ are “amplitudes” for the reflected and transmitted waves. The 
boundary conditions are 



210 CHAPTER 9. THE BOUNDARY AT INFINITY 

continuity – The fact that the string doesn’t break implies that it is continuous, so that 
ψ(0, t) can be computed with either (9.39) or (9.40). This implies 

1 + R = τ . (9.41) 

F = ma – The horizontal component of the tension in the string must be equal on the two 
sides. Both are about equal to T , for small displacements. However, if there is a kink 
in the string, the vertical components do not match, as shown in figure 9.4 (see also 
(8.16)-(8.17)). The force on the mass is then the tension times the slope for x ≥ 0 
minus the tension times the slope for x ≤ 0, thus F = ma becomes 

T 
µ 

∂
ψ(x, t)| − 

∂
ψ(x, t)|

¶
x=0+ x=0− 

∂x ∂x (9.42)
∂2 

= m ψ(0, t)
∂t2 

or 
ik T (R − 1 + τ) = −mω2 τ . (9.43) 

Thus 
1 + R = τ , 1 − R = (1 − i²)τ , (9.44) 

so that 
2 i² 

τ = , R = . (9.45)
2 − i² 2 − i² 

Clearly, this is in accord with our guess. 

1 

������������

θ = ψ0 � y

Figure 9.4: The force on the mass. 

Note that these amplitudes, unlike those in (9.11), are complex numbers. The transmitted 
and reflected waves do not have the same phase as the incoming wave at the boundary. The 
phase difference between the transmitted (or reflected) wave is called a “phase shift.” One 
interesting feature of the solution, (9.45), that we did not guess is that for large ², the small 
transmitted wave is 90◦ out of phase with the incoming wave. 
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This scattering is animated in program 9-2. The solution is also decomposed into incom-
ing, transmitted and reflected waves. Stare at the mass and see if you can understand how the 
kink in the string is related to its acceleration. You can also make the mass larger and smaller 
to approach the limits (9.36) and (9.37). 

9.2 Index of Refraction 

Matter is composed of electric charges. This is something of a miracle. We cannot understand 
it without quantum mechanics. In a purely classical world, there would be no stable atoms or 
molecules. Because of quantum mechanics, the world does not collapse and we can build sta-
ble chunks of matter composed of equal numbers of positive and negative charges. In a chunk 
of matter in equilibrium, the charge and current are very close to zero when averaged over any 
large smooth region. However, in the presence of external electric and magnetic fields, such 
as those produced by an electromagnetic wave, the charges out of which the matter is built 
can move. This gives rise to what are called “bound” charges and currents, distinguishable 
from the “free” charges that are not part of the matter itself. These bound charges and cur-
rents affect the relation between electric and magnetic fields. In a homogeneous and isotropic 
material, which is a fancy way of describing a material that does not have any preferred axis, 
the effects of the matter (averaged over large regions) can be incorporated by replacing the 
constants ²0 and µ0 by the permittivity and permeability, ² and µ. Then Maxwell’s equations 
for electromagnetic waves, (8.35)-(8.37), are modified to1 

∂Ey ∂Ex ∂Bz ∂Ez ∂Ey ∂Bx− = − , − = − ,
∂x ∂y ∂t ∂y ∂z ∂t (9.46)

∂Ex ∂Ez ∂By− = − ,
∂z ∂x ∂t 

∂By ∂Bx ∂Ez ∂Bz ∂By ∂Ex− = µ² , − = µ² ,
∂x ∂y ∂t ∂y ∂z ∂t (9.47)

∂Bx ∂Bz ∂Ey− = µ² ,
∂z ∂x ∂t 

∂Ex ∂Ey ∂Ez ∂Bx ∂By ∂Bz+ + = 0 , + + = 0 . (9.48)
∂x ∂y ∂z ∂x ∂y ∂z 

Now (8.41)-(8.47) are satisfied with the appropriate substitutions, 

²0 → ² , µ0 → µ . (9.49) 

In particular, the dispersion relation, (8.47), becomes 

1 µ0²0
ω2 = k2 , = c 2 k2 . (9.50)

µ² µ² 
1See Purcell, chapter 10. 
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so electromagnetic waves propagate with velocity 

ω 
r 

µ0²0 
v = = c , (9.51)

k µ² 

and (8.48) becomes 
β± √ 

µ²ε± β± √ 
µ²ε± 

yxxy (9.52)= ± = ¨, . 

The factor r 
µ² 

n = (9.53) 

y

µ0²0 

is called the index of refraction of the material. 1/n is the ratio of the speed of light in the 
material to the speed of light in vacuum. In terms of n, we can write (9.52) as 

β± ε± ε± 
xy 

n n±βx (9.54)= ± = ¨, . 
c c 

Note also that we can rewrite (9.50) in the following useful form: 

ω 
k = n . (9.55) 

c 

For fixed frequency, the wave number is proportional to the index of refraction. For most 
transparent materials, µ is very close to 1, and can be ignored. But ² can be very different 
from 1, and is often quite important. For example, the index of refraction of ordinary glass 
is about 1.5 (it varies slightly with frequency, but we will discuss the interesting and familiar 
consequences of this later, when we treat waves in three dimensions). 

9.2.1 Reflection from a Dielectric Boundary 

Let us now consider a plane wave in the +z direction in a universe that is filled with a 
dielectric material with index of refraction n = 

p
²/²0, for z < 0 and filled with another 

0dielectric material with index of refraction n = 
p

²0/²0, for z > 0. The boundary between 
the two dielectrics, the plane z = 0, is analogous to the boundary between two regions of the 
rope in figure 9.1. We would, therefore, expect some reflection from this surface. 

Because the electric field in a plane electromagnetic wave is perpendicular to its direction 
of motion, we know that in this case that it is in the x-y plane. It doesn’t matter in what 
direction the electric field of our incoming plane wave is pointing in the x-y plane. That is 
clear by symmetry. The system looks the same if we rotate it around the z axis, thus we can 
always rotate until our ~e+ vector is pointing in some convenient direction, say the x direction. 
It is then pretty obvious that the reflected and transmitted waves will also have their electric 
fields in the ±x direction. Actually, we can turn this into a symmetry argument too. If we 
reflect the system in the x-z plane, both the incoming wave and the dielectric are unchanged, 
but any y component of the transmitted or reflected waves would change sign. Thus these 
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components must vanish, by symmetry. Magnetic fields work the other way, because of the 
cross product of vectors in their definition. Thus we can write 

Ex(z, t) = Aei(kz−ωt) + R Aei(−kz−ωt) 

for z < 0 , (9.56) 
n n 

By(z, t) = Aei(kz−ωt) − R Aei(−kz−ωt) 

c c 
and 

Ex(z, t) = τ Aei(kz−ωt) 

for z > 0 , (9.57)0n
By(z, t) = τ Aei(kz−ωt) 

c 
where we have continued our convention of calling the amplitude of the incoming wave A. 
Here, A has units of electric field. In (9.56) and (9.57), we have used (9.54) to get the B field 
from the E field. 

To compute R and τ , we need the boundary conditions at z = 0. For this we go back to 
Maxwell. The only way to get a discontinuity in the electric field is to have a sheet of charge. 
In a dielectric, charge builds up on the boundary only if there is a polarization perpendicular 
to the boundary. In this case, the electric fields, and therefore the polarizations, are parallel to 
the boundary, and thus the E field is continuous at z = 0. The only way to get a discontinuity 
of the magnetic field, B, is to have a sheet of current. If µ were not equal to 1 in one of the 
materials, then we would have a nonzero magnetization, and we would have to worry about 
current sheets at the boundary. However, because these are only dielectrics, and µ = 1 in 
both, there is no magnetization and the B field is continuous at z = 0 as well. Thus we can 
immediately read off the boundary conditions: 

1 + R = τ , n(1 − R) = n 0τ . (9.58) 

Because of (9.55), the boundary condition (9.58) is equivalent to 

1 + R = τ , k(1 − R) = k0τ , (9.59) 

which looks exactly like (9.9) and (9.10). We can simply take over the results of (9.11), 

2 1 − k0/k
τ = , R = . (9.60)

1 + k0/k 1 + k0/k 

9.3 * Transfer Matrices 

9.3.1 Two Masses on a String 

Next consider the reflection and transmission from two masses on a string, as in figure 9.5. 
Now translation invariance and the boundary condition at x = ∞ imply that 

ψ(x, t) = Aeikx e −iωt + R Ae−ikx e −iωt for x ≤ 0 , (9.61) 



214 CHAPTER 9. THE BOUNDARY AT INFINITY 

x = 0 x = L 
1 → 

t 
TI → 

t 
τ → 

← R ← RI 

Figure 9.5: Two masses on a string. 

−iωt + RI Ae−ikx ψ(x, t) = TI Aeikx e e −iωt for 0 ≤ x ≤ L , (9.62) 

ψ(x, t) = τ Aeikx e −iωt for x ≥ L . (9.63) 

x = ` 
TI → TII → 

t 

← RI ← RII 

Figure 9.6: The general scattering problem from a mass on a string. 

We could solve this problem in the same way, simply imposing boundary conditions 
twice, at x = 0 and at x = L, but there is a systematic way of doing this that is very useful. 
Consider first the general scattering problem from a single mass at x = `, with both incoming 
and outgoing waves on both sides, as shown in figure 9.6. This is the most general possible 
thing that can happen in scattering from a single mass, and we will be able to use the result 
to do much more complicated problems without any additional work. The general solution 
has the form 

−iωt + RI Ae−ikx ψ(x, t) = TI Aeikx e e −iωt for x ≤ ` , (9.64) 

−iωt + RII Ae−ikx ψ(x, t) = TII Aeikx e e −iωt for x ≥ ` . (9.65) 

The boundary conditions are continuity — 

ik` + RI e −ik` ik` + RII e −ik` TI e = TII e (9.66) 

and F = ma — 

T 
µ 

∂
ψ(x, t)| − 

∂
ψ(x, t)|

¶
x=`+ x=`− 

∂x ∂x (9.67)
∂2 

= m ψ(`, t)
∂t2 

or 

ik T 
³ 
(TII − TI ) e ik` + (RI − RII ) e −ik` ́

 

(9.68) 
ik` + RII e −ik`) .= −mω2 (TII e 
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Solving for TI and RI gives 

1 −2ik`
i

TI = 
h
(2 − i²) TII − i² RII e ,

2 (9.69)
1 

RI = 
h
(2 + i²) RII + i² TII e 2ik`

i 
.

2 

The important point is that because of linearity, the result (9.69) can be written in matrix 
form: µ 

TI 
¶ 

= d(`) 
µ 

TII 
¶ 

(9.70)
RI RII 

where the matrix d(`) 
1 

µ 
(2 − i²) −i² e−2ik` ¶

d(`) = . (9.71)
2 i² e2ik` (2 + i²) 

The matrix, d(`), is a “transfer matrix.” It allows us to get from the amplitudes in one 
region to those in the next by just doing a matrix multiplication. We can use this to solve the 
two mass problem without any further calculation except a matrix multiplication. Comparing 
the general result, (9.70), with the two mass problem, figure 9.5, we see immediately that 

µ 
1 

¶ 

= d(0) 
µ 

TI 
¶ 

, (9.72)
R RI 

and µ 
TI 

¶ 

= d(L) 
µ 

τ 
¶ 

. (9.73)
RI 0 

Thus µ 
1 

¶ 

= d(0) d(L) 
µ 

τ 
¶ 

. (9.74)
R 0 

Doing the matrix multiplication, 

1 
d(0) d(L) = 

4 
(9.75)⎛ 

(2 − i²)2 + ²2e2ikL −i² 
³ 
(2 − i²)e−2ikL + (2 + i²) 

´ ⎞ 

⎝ 
i² 

³ 
(2 − i²) + (2 + i²)e2ikL

´ 
(2 + i²)2 + ²2e−2ikL 

⎠ . 

So 
4 

τ = ,
2ikL (2 − i²)2 + ²2e (9.76) 

R = i² 
³ 
(2 − i²) + (2 + i²)e 2ikL ́

 τ
.

4 
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Note that the reflection and transmission shows interesting resonance structure. For ex-
ample, the reflection vanishes for 

2ikL 2 − i² 
e = − . (9.77)

2 + i² 

In figure 9.7, |τ | and |R| are plotted versus ² for kL = 0.5. 

1 

0 

² → 

Figure 9.7: |τ | and |R| plotted versus ² for two masses on a string. 

9.3.2 k Changes 

Region I Region II 

TI → x = ` TII → 

← RII ← RI 

Figure 9.8: The general scattering problem for a change of k. 

Let us return to the simple example at the beginning of the chapter of a boundary between 
two regions of string with different values of k. This is a very important example because its 
general features are characteristic of many important physical systems. For example, when a 
light-wave encounters a transparent medium, the k value changes. That situation is somewhat 
more complicated because of the three-dimensional nature of light waves and because of 

|τ | 

|R| 
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polarization. However the analogy between (9.59) and (9.9) and (9.10) means that we can 
take over the discussion of of the string directly to electromagnetic waves reflecting from 
a dielectric boundary perpendicular to the direction of the wave. In this section, we apply 
the general method of transfer matrices discussed in the previous section to this important 
example. Thus we consider the situation shown in figure 9.8. where the waves have the form 

ik1x + RI e −ik1x ́
 

ψ(x, t) = Ae−iωt 
³ 
TI e in I , (9.78) 

−ik2x ́
 

ψ(x, t) = Ae−iωt 
³ 
TII e ik2x + RII e in II . (9.79) 

Then as in (9.9) and (9.10), the boundary conditions are that ψ is continuous at x = `, which 
implies 

ik1 ̀  −ik1 ̀  ik2 ̀  −ik2 ̀  TI e + RI e = TII e + RII e , (9.80) 

and that the slope, ∂ψ/∂x is continuous at x = `, which implies 

ik1 ̀  ik2 ̀  −ik2 ̀  ́
 

ik1 

³ 
TI e − RI e −ik1 ̀  ́

 
= ik2 

³ 
TII e − RII e . (9.81) 

Solving the simultaneous linear equations, (9.80) and (9.81), for TI and RI and express-
ing the result in matrix form, we find 

µ 
TI 

¶ 

= d(k1, k2, `) 
µ 

TII 
¶ 

, (9.82)
RI RII 

where 
ik2 ̀ −ik1 ̀  −ik2 ̀ −ik1 ̀  1 

⎛ ³ 
1 + k2 

´ 
e

³ 
1 − k2 

´ 
e

⎞ 

k1 k1d(k1, k2, `) = ⎠ . (9.83)
ik2 ̀ +ik1 ̀  −ik2 ̀ +ik1 ̀2 

⎝ ³ 
1 − k2 

´ 
e

³ 
1 + k2 

´ 
ek1 k1 

(9.82) is a very general result because k1, k2 and ̀  can be anything. Note that the relation 
is symmetrical: µ 

TII 
¶ 

= d(k2, k1, `) 
µ 

TI 
¶ 

. (9.84)
RII RI 

In matrix language, that implies that 

d(k2, k1, `) d(k1, k2, `) = I . (9.85) 

It is also useful to use the properties of matrix multiplication to rewrite (9.83) in the 
following form: 

d(k1, k2, `) = b(k1, `)−1 τ (k1, k2) b(k2, `) , (9.86) 

where 
ik` 

b(k, ̀ ) = 
µ 

e 0 
¶ 

, (9.87)
0 e−ik` 
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and 
1 

⎛ ³ 
1 + k2 

´ ³ 
1 − k2 

´ ⎞ 

k1 k1τ (k1, k2) = d(k1, k2, 0) = ⎠ . (9.88)
2 

⎝ ³ 
1 − k2 

´ ³ 
1 + k2 

´ 

k1 k1 

You will see the utility of this in the computer problem, (9.6). 

9.3.3 Reflection from a Thin Film 

Region I Region II Region III 

1 → x = 0 TII → x = L τ → 

← R ← RII 

Figure 9.9: Reflection from a thin film. 

Consider the situation shown in figure 9.9. where the wave numbers are k1 for x ≤ 0, 
k2 for 0 ≤ x ≤ L and k3 for x ≥ L. As usual, translation invariance plus the boundary 
condition at infinity (that the incoming wave in I has amplitude, A, and that there is only an 
outgoing wave in III) implies 

ψ(x, t) = Ae−iωt 
³ 
e ik1x + R e−ik1x ́

 
for x ≤ 0 , 

ψ(x, t) = Ae−iωt 
³ 
TII e ik2x + RII e −ik2x ́

 
for 0 ≤ x ≤ L , (9.89) 

ik3xψ(x, t) = τ Ae−iωt e for L ≤ x . 

Then we know from the results of the previous section that 
µ 

1 
¶ 

= d(k1, k2, 0) 
µ 

TII 
¶ 

(9.90)
R RII 

and µ 
TII 

¶ 

= d(k2, k3, L) 
µ 

τ 
¶ 

(9.91)
RII 0 

and therefore µ 
1 

¶ 

= d(k1, k2, 0) d(k2, k3, L) 
µ 

τ 
¶ 

. (9.92)
R 0 

d(k1, k2, 0) d(k2, k3, L) 
(9.93) 

= b(k1, 0)−1 τ(k1, k2) b(k2, 0) b(k2, L)−1 τ(k2, k3) b(k3, L) 
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Often we are interested in the situation k3 = k1, that describes a film (in one-dimension, 
a film is just a region in x) in an otherwise homogeneous medium. This is then a one-
dimensional analog of the reflection of light from a soap bubble. Then the transfer matrix 
looks like 

1 
4 

⎛ 

⎝ 

³ 
1 + k2 

k1 

´ 

³ 
1 − k2 

k1 

´ 

⎛ 

⎝ 

³ 
1 + k1 

k2 

´ 

³ 
1 − k1 

k2 

´ 

³ 
1 − k2 

k1 

´ 

³ 
1 + k2 

k1 

´ 

⎞ 

⎠ 
µ 

e−ik2L 0 
0 eik2L 

¶ 

³ 
1 − k1 

k2 

´ 

³ 
1 + k1 

k2 

´ 

⎞ 

⎠ 
µ 

eik1L 0 
0 e−ik1L 

¶ 
(9.94) 

Thus 

1 = 

Ã 

cos k2L − i 
k2 

1 + k2 
2 

2k1k2 
sin k2L 

! 

e ik1L τ (9.95) 

and 

R = − 

Ã 

i 
k2 

1 − k2 
2 

2k1k2 
sin k2L 

! 

e ik1L τ (9.96) 

or 

τ = 

Ã 

cos k2L − i 
k2 

1 + k2 
2 

2k1k2 
sin k2L 

!−1 

e −ik1L (9.97) 

and 

R = − 

Ã 

i 
k2 

1 − k2 
2 

2k1k2 
sin k2L 

! Ã 

cos k2L − i 
k2 

1 + k2 
2 

2k1k2 
sin k2L 

!−1 

. (9.98) 

Here we see the phenomenon of resonant transmission. The wave does not get reflected at 
all if the thickness of the film is an integral or half-integral number of wavelengths. Note, 
also, that when k2 → k1, τ → 1 and R → 0 as they should, because in this limit there is no 
boundary. 

The reflection in (9.98) varies rapidly with k2, as shown figure 9.10, where we plot the 
intensity of the reflected wave versus k2 for fixed ratio k1/k2 = 3. It is this rapid variation of 
the intensity of reflected light as a function of wavelength that is responsible for the familiar 
color patterns on thin films like soap bubbles and oil slicks. 

9.3.4 Nonreflective Coating 

We will not work out the general case of k1 6 k3, simply because the algebra is a mess. = 
However, one important special case is worth noting. Suppose that you have a boundary 
between media in which the wave number of your traveling wave are k1 and k3. Normally, 
you find reflection at the boundary. The question is, can you add an intermediate film layer 
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Figure 9.10: Graph of |R|2 versus k2 for k1/k2 = 3 . 

with wave number k2, that eliminates all reflection? The answer is yes. First you must adjust 
the wave number in the film to be the geometric mean of k1 and k3, so that 

k2 k3 = . (9.99)
k1 k2 

Then the transfer matrix becomes 

1 
⎛ ³ 

1 + kk
2

1 

´ ³ 
1 − kk

2

1 

´ ⎞ µ 
e−ik2L 0 

¶
ik2L4 

⎝ ³ 
1 − k2 

´ ³ 
1 + k2 

´ ⎠ 
0 e

k1 k1 (9.100)⎛ ³ 
1 + k2 

´ ³ 
1 − k2 

´ ⎞ 
ik3L 

k1 k1 

µ 
e 0 

¶
−ik3L .⎝ ³ 

1 − k2 
´ ³ 

1 + k2 
´ ⎠ 

0 e
k1 k1 

It is easy to check that the reflection vanishes when there are a half-odd-integral number of 
wavelengths in the intermediate region, 

π 
k2L = (2n + 1) . (9.101)

2 

In qualitative terms, the reflection vanishes because of a destructive interference between the 
reflected waves from the two boundaries. This has practical applications to nonreflective 
coatings for optical components. 

Chapter Checklist 

You should now be able to: 
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i. Analyze scattering problems by imposing boundary conditions and computing reflec-
tion and transmission coefficients; 

ii. Identify a wave with some reflection, and differentiate it from a pure traveling or stand-
ing wave; 

iii. Check energy conservation in scattering problems; 

iv. Analyze electromagnetic plane waves in a dielectric, and the reflection from a dielectric 
boundary; 

v. * Use transfer matrices to simplify the analysis of scattering from more than one bound-
ary. 

Problems 

9.1. 

K K K K K K K 
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Region I x = 0 x = a Region II 

Shown above is the boundary between two semi-infinite systems. To the left, there are identi-
cal blocks of mass m. To the right, there are identical blocks of mass M . They are connected 
as shown by identical massless springs with spring constant K, such that the equilibrium sep-
aration between neighboring blocks is a. Consider the reflection of a traveling longitudinal 
wave from the boundary between these two regions. That is, assume that in region I there is 
an incident wave of amplitude A traveling to the right and a reflected wave traveling to the 
left. In a complex notation, the displacement of the mass with equilibrium position x is 

ψ(x, t) = Ae−i(ωt−kx) + R Ae−i(ωt+kx) 

for x ≤ a. What is the relation between ω and k? 
In region II, there is only a transmitted wave: 

x)ψ(x, t) = T Ae−i(ωt−k0
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for x ≥ 0. What is the relation between ω and k0? Find the appropriate boundary conditions 
that allow you to relate ψ(x, t) in the two regions and solve for R (do not bother to simplify 
the complex number). Check your result by taking the limit of a, m and M going to zero 
with m/a and M/a fixed and comparing with an appropriate continuous system. 

9.2. An infinite line of coupled pendulums supports traveling waves, but it has no stand-
ing wave normal modes in which the displacement of the pendulums goes to zero at infinity. 
Consider, however, the system shown below: 
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Here block 0 is free to slide longitudinally with no gravitational restoring force, only the 
coupling due to the springs. If the blocks have mass M , the springs’ spring constant K, 
the separation between neighboring blocks is a, and the pendulums have length `, find the 
frequency of the standing wave normal mode of the system in which the displacements are 
Ae−κx for x ≥ 0 and Aeκx for x ≤ 0. Hint: Consider the subsystem, −a ≤ x ≤ a, as 
part of an infinite system with appropriate boundary conditions. Then you can get the answer 
directly from the dispersion relation. 

9.3. 

i 

x = 0 

Consider a string with linear mass density ρ, split into two pieces. The two halves are attached 
to a massless ring which slides vertically without friction on a rod at x = 0. One of the two 
halves is stretched in the negative x direction with tension T . The other is stretched in the 
positive x direction with tension T 0 . Note that the vertical rod is necessary to balance the 
horizontal forces on the massless ring from the two strings with different tensions. 

Suppose that a traveling wave comes in from the negative x direction. Then the displace-
ment of the strings in the two regions is 

x −iω0ψ(x, t) = Aeikx e −iωt + R Ae−ik0 e t for x ≤ 0 

xψ(x, t) = τ Aeik00 e −iω00t for x ≥ 0 . 
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a. Find k, k0 , ω0 , k00 and ω00 in terms of ω, T , T 0 and ρ. Hint – this is easy! 

b. Write down the two boundary conditions at x = 0 and find R and τ . 

9.4. Consider traveling waves in an infinite system, part of which is shown below, for 
longitudinal (horizontal) motion of the blocks. 
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All the blocks have mass m, except for block 0 which is massless. The springs are massless 
and have spring constant K. The separation between neighboring blocks is a. To the left of 
block 0, which we will take to be at x = 0, there is an incoming and a reflected wave, so that 
the longitudinal displacement of the blocks for x ≤ 0 has the form 

Aeikx−iωt + R Ae−ikx−iωt . 

To the right of the massless block, there is a transmitted wave, so that the longitudinal dis-
placement of the blocks for x ≥ 0 has the form 

T Aeikx−iωt . 

ω and k are related by the dispersion relation 

ω2 =
4K 

sin2 ka 
. 

m 2 

a. Explain the physics of the boundary conditions at x = 0. 

b. Find R and T . 

9.5. Consider a semi-infinite system of two kinds of massive string with different densi-
ties, shown below: 

l 
ρ ρ0 

q q q 

x = −L 

region I 

x = 0 

region II 

The density of the string in region I is ρ and in region II is ρ0. The tension in both strings is 
T . Suppose that the end at x = −L is oscillated in the transverse direction with displacement 
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χ sin ωt. This produces an outgoing wave (moving to the right) in region II with no incoming 
π 

q 
Twave. Suppose that ω = . Find the displacement at the point x = 0 as a function of2L ρ 

time. 

9.6. If you are doing a reflection and transmission problem involving several different 
regions, and thus requiring several boundary conditions, the transfer matrix is very helpful. 
You saw this in the analysis of scattering from a thin film. 

Your computer assignment is to extend this analysis to incorporate 2n such boundary 
conditions where n is some large integer. In particular, consider a continuous string with 
wave number k2 for L ≤ x ≤ 2L, 3L ≤ x ≤ 4L, · · ·, and (2n−1)L ≤ x ≤ 2nL, and k1 

elsewhere. 

1 
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Figure 9.11: n = 3. 

Take k1 = k and k2 = 2k. Compute the amplitude for transmission of an incoming 
wave in this system as a function of L by doing the appropriate multiplication of 2n matrices. 
To do this, you must program your computer to multiply complex matrices. Organize your 
program in an iterative way, so that you can change n easily. This will allow you to start out 
with small n and go to larger n only when you are sure that the program is working. 

If possible, you should present the results in the form of a graph of the absolute value of 
the transmission coefficient versus kL, for 0 ≤ L ≤ π/2k. As you go to higher n, something 
interesting happens. The transmission coefficient drops nearly to zero in a region of L values. 
Even if you cannot produce a graph, you should be able to find the range of L for which the 
transmission goes to zero as n gets large. 

Hint: For n = 3, the result should look like the graph in figure 9.11. 
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