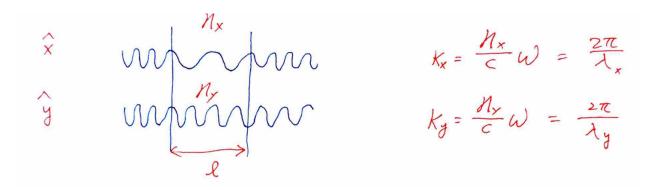
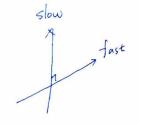
8.03 Lecture 18

Waveplate: use material which the index of reflection is different for different orientations of light passing through it!



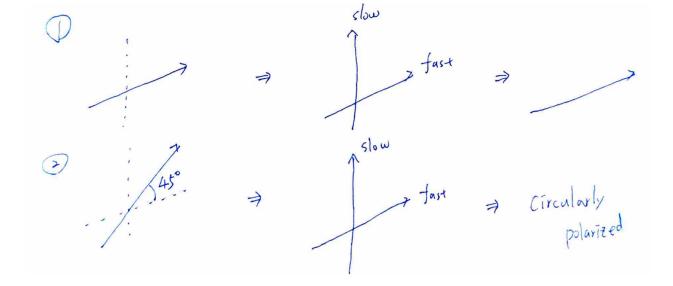
$$\Delta \phi = \frac{2\pi l}{\lambda_x} - \frac{2\pi l}{\lambda_y} = \frac{n_x - n_y}{c} \omega l$$

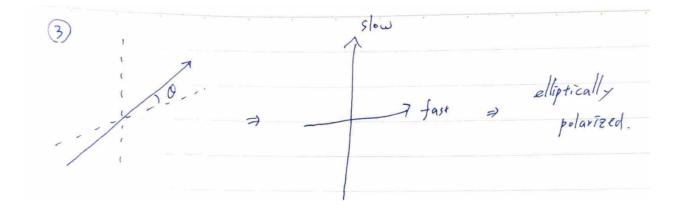
Quarter-waveplate: $\Delta \phi$ is designed to be $\frac{\pi}{2}$



*Axis with smaller phase \rightarrow fast axis

*Axis with larger phase \rightarrow slow axis





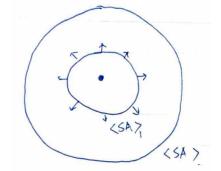
Matrix: $Q_0 = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$ In general:

$$\begin{pmatrix} \cos^2\theta + i\sin^2\theta & \cos\theta\sin\theta - i\sin\theta\cos\theta\\ \cos\theta\sin\theta - i\sin\theta\cos\theta & \sin^2\theta + i\cos^2\theta \end{pmatrix}$$

Where θ is the direction of the fast axis with respect to the x axis. (Editor's note: see video lecture for a demonstration.)

How do we produce EM waves?! Radiation from a point source.

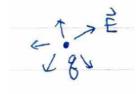
In vacuum, EM wave neither loses nor gains energy. Recall the Poynting vector: $\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}$ "rate of energy transfer per area"



$$\langle S \cdot A \rangle_1 = \langle S \cdot A \rangle_2 = \text{power}$$

 $\langle S \rangle \propto 1/A \propto 1/r^2$
 $\Rightarrow \langle \vec{E} \rangle, \langle \vec{B} \rangle \propto 1/r$

Question: How do I produced radiation? i Stationary charge:



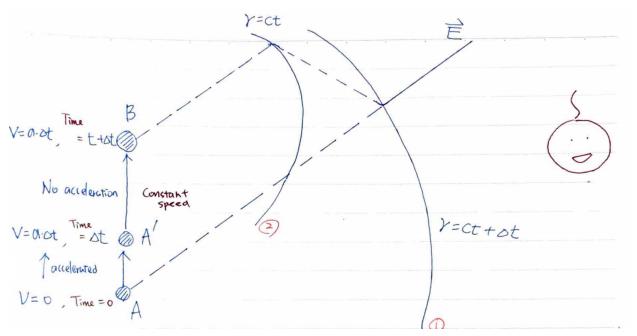
ii Charge at constant speed u:

$$\begin{split} \beta &= \frac{u}{c} \\ \vec{E} &= \frac{q}{4\pi\epsilon_0 r^2} \frac{1 - \beta^2}{(1 - \beta^2 \sin^2 \theta)^{3/2}} \hat{r} \\ \vec{B} &= \frac{\vec{u} \times \vec{E}}{c^2} \propto \frac{1}{r^2} \\ \Rightarrow |\vec{E}| \propto \frac{1}{r^2} \quad , \quad |\vec{B}| \propto \frac{1}{r^2} \\ \frac{1}{\mu_0} \vec{E} \times \vec{B} &= \vec{S} \propto \frac{1}{r^4} \Rightarrow \text{Does not radiate} \end{split}$$

(Or we can use a simpler argument: boost to the rest frame of the charge)

Therefore we need to accelerate the charge to produce radiation. (Proof can be found in Georgi 355-360). Or the following geometrical argument. Goal: to create a "kink" in the electric field: Accelerated Charge!

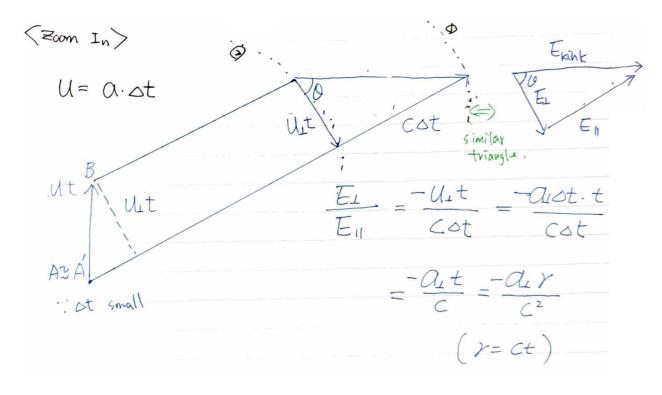
Consider a charge, accelerated between t = 0 to $t = \Delta t$. a is small and Δt is small.



It takes time for information to propagate (at the speed of light).

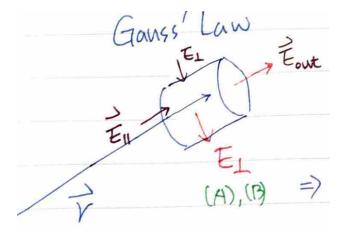
(1) Surface: information that the charge accelerated has only just reached this sphere (2) Surface: information that the charge moving with constant velocity has reached this sphere Q:What will the "observer" see at $t = t + \Delta t$? A: A stationary charge.

Therefore outside (1) the electric field is like the charge has never moved (where the observer lives). Inside (2) the electric field is in the \hat{r} direction. Between (1) and (2) the field must be continuous because there is no source between them. Since $u \equiv a \cdot \Delta t$ is $\ll c$ (where u is the velocity of the charge after acceleration) then the field lines from A to B are approximately parallel. We have managed to create a "kink"!



$$\Rightarrow E_{\perp} = \frac{-a_{\perp}r}{c^2}E_{\parallel}$$

What is $E_{\parallel}?$ Use Gauss' Law:



$$E_{\parallel} = E_{Out} = \frac{q}{4\pi\epsilon_0 r^2} = \text{Electric field outside}$$

 $E_{\perp} = \frac{-qa_{\perp}}{4\pi\epsilon_0 r^2 c^2}$

This is very important! E_{\perp} at position \vec{r} is due to acceleration which occurred at a retarded time:

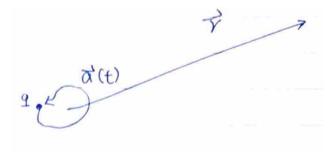
$$t' = t - r/c$$

$$\Rightarrow \vec{E}_{Rad}(\vec{r}, t) = \frac{-q\vec{a}_{\perp}(t - r/c)}{4\pi\epsilon_0 c^2 r}$$

$$\Rightarrow \vec{B}_{Rad} \propto \frac{1}{r}$$

$$\Rightarrow \vec{S}_{Rad} \propto \vec{E}_{Rad} \times \vec{B}_{Rad} \propto \frac{1}{r^2}$$

We are sending energy to the edge of the universe!!



 $\vec{r} \gg$ scale of $\vec{a}(t)$ such that the static contributions die out.

$$\begin{split} \vec{E}_{Rad}(\vec{r},t) &= \frac{-q\vec{a}_{\perp}(t-r/c)}{4\pi\epsilon_0 c^2 r} \\ \vec{B}_{Rad}(\vec{r},t) &= \frac{1}{c}\hat{r} \times \vec{E}_{Rad}(\vec{r},t) \\ \vec{S}_{Rad}(\vec{r},t) &= \frac{1}{\mu_0}\vec{E}_{Rad} \times \vec{B}_{Rad} \\ \vec{a}_{\perp} &= \vec{a} - \vec{a} \cdot \hat{r} \ \hat{r}, \qquad \hat{r} = \frac{\vec{r}}{|\vec{r}|} \end{split}$$

1. Get \vec{a}

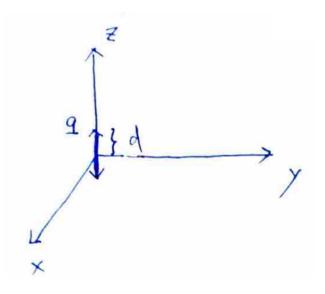
- 2. define \vec{r} , get $\vec{a}_{\perp} \vec{a}_{\perp} = \vec{a} \vec{a} \cdot \hat{r} \hat{r}$
- 3. \vec{E}_{Rad}

4.
$$\vec{B}_{Rad} = \frac{1}{c} \hat{r} \times \vec{E}_{Rad}$$

5. $\vec{S}_{Rad} = \frac{1}{\mu_0} \vec{E}_{Rad} \times \vec{B}_{Rad}$

6. Total power: $P(t) = \iiint \vec{S}_{Rad}(\vec{r}, t) \cdot dA\hat{n} = \frac{q^2 |a(t - r/c)|^2}{4\pi\epsilon_0 c^3}$

Example: harmonically oscillating charge:



where $x = \hat{z}d \cos \omega t$ and $R \gg d$ (1) At a distance R away from the charge in the \hat{z} :

$$\vec{a}(t) = \vec{x}(t) = -\hat{z}d\omega^2 \cos \omega t$$
$$\vec{E}_{Rad}(\vec{r}, t) - = \frac{-q\vec{a}_{\perp}(t - r/c)}{4\pi\epsilon_0 c^2 r}$$
$$\vec{a}_{\perp} = \vec{a} - \vec{a} \cdot \hat{r}\hat{r} \quad \text{in this case } \vec{a} \parallel \vec{z}$$
$$\Rightarrow \vec{a}_{\perp} = 0$$

 $\Rightarrow \text{No radiation!}$ (2) How about $R\hat{y}$?

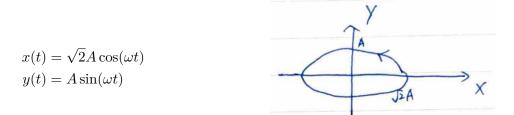
$$\vec{a}_{\perp} = \vec{a} - \vec{a} \cdot \hat{y}\hat{y} = -\hat{z}d\omega^2 \cos \omega t$$
$$\vec{E}_{Rad}(t) = \frac{+qd\omega^2 \cos(\omega(t - R/c))}{4\pi\epsilon_0 c^2 R}\hat{z}$$
$$\vec{B}_{Rad}(t) = \frac{1}{c}\hat{y} \times \vec{E}_{Rad}(t) = \frac{qd\omega^2 \cos(\omega(t - R/c))}{4\pi\epsilon_0 c^3 R}\hat{x}$$

We get harmonic waves with amplitude decreasing versus R (3) How about at $R\left(\frac{1}{2}\hat{y} + \frac{\sqrt{3}}{2}\hat{z}\right)$?

(30° angle with respect to the z-axis in the y - z plane)

$$\begin{split} \vec{a}_{\perp}(t) &= \vec{a} - (\vec{a} \cdot \hat{r})\hat{r} \\ &= -\omega^2 d\cos(\omega t) \left(\hat{z} - \frac{\sqrt{3}}{2} \left(\frac{1}{2} \hat{y} + \frac{\sqrt{3}}{2} \hat{z} \right) \right) \\ &= -\omega^2 d\cos\omega t \left(\frac{1}{4} \hat{z} - \frac{\sqrt{3}}{4} \hat{y} \right) \\ \vec{E}_{Rad} &= \frac{q\omega^2 d}{8\pi\epsilon_0 c^3 R} \cos(\omega (t - R/c)) \left(\frac{1}{2} \hat{z} - \frac{\sqrt{3}}{2} \hat{y} \right) \end{split}$$

Example 2: A particle with charge q is moving on an elliptical orbit



What are the polarizations of the electric field seen by distant observers on the positive x, y, z axes? First calculate $\vec{a}(t)$

$$\vec{a}(t) = -\sqrt{2}A\omega^2 \cos(\omega t)\hat{x} - A\omega^2 \sin(\omega t)\hat{y}$$

(1) Observer $R\hat{x}$

$$\vec{a}_{\perp} = -A\omega^2 \sin \omega t \hat{y}$$

 $\vec{E}_{Rad} = \frac{q\omega^2 A}{4\pi\epsilon_0 c^3 R} \sin(\omega(t - R/c))$ Linearly polarized

(2) \hat{y} : similarly, also linearly polarized

(3) \hat{z} : elliptically polarized

MIT OpenCourseWare https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.