### 8.03 Lecture 18

Waveplate: use material which the index of reflection is different for different orientations of light passing through it!

$$
\begin{aligned}
& x_{x}=\frac{n_{x}}{c} \omega=\frac{2 \pi}{\lambda_{x}} \\
& K_{y}=\frac{\lambda_{y}}{c} \omega=\frac{2 \pi}{\lambda_{y}} \\
& \Delta \phi=\frac{2 \pi l}{\lambda_{x}}-\frac{2 \pi l}{\lambda_{y}}=\frac{n_{x}-n_{y}}{c} \omega l
\end{aligned}
$$

Quarter-waveplate: $\Delta \phi$ is designed to be $\frac{\pi}{2}$

*Axis with smaller phase $\rightarrow$ fast axis
*Axis with larger phase $\rightarrow$ slow axis

$\Rightarrow$ toast
$\Rightarrow$ Circularly
polarized


Matrix: $Q_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right)$
In general:

$$
\left(\begin{array}{cc}
\cos ^{2} \theta+i \sin ^{2} \theta & \cos \theta \sin \theta-i \sin \theta \cos \theta \\
\cos \theta \sin \theta-i \sin \theta \cos \theta & \sin ^{2} \theta+i \cos ^{2} \theta
\end{array}\right)
$$

Where $\theta$ is the direction of the fast axis with respect to the $x$ axis.
(Editor's note: see video lecture for a demonstration.)

How do we produce EM waves?! Radiation from a point source.
In vacuum, EM wave neither loses nor gains energy. Recall the Poynting vector: $\vec{S}=\frac{1}{\mu_{0}} \vec{E} \times \vec{B}$ "rate of energy transfer per area"


$$
\begin{gathered}
\langle S \cdot A\rangle_{1}=\langle S \cdot A\rangle_{2}=\text { power } \\
\langle S\rangle \propto 1 / A \propto 1 / r^{2} \\
\Rightarrow\langle\vec{E}\rangle,\langle\vec{B}\rangle \propto 1 / r
\end{gathered}
$$

Question: How do I produced radiation?
i Stationary charge:


$$
\left.\begin{array}{rl}
\vec{E} & =\frac{q}{4 \pi \epsilon_{0} r^{2}} \propto \frac{1}{r^{2}} \\
\vec{B}_{0} & =0
\end{array}\right\} \vec{S}=0
$$

ii Charge at constant speed $u$ :

$$
\begin{aligned}
\beta & =\frac{u}{c} \\
\vec{E} & =\frac{q}{4 \pi \epsilon_{0} r^{2}} \frac{1-\beta^{2}}{\left(1-\beta^{2} \sin ^{2} \theta\right)^{3 / 2}} \hat{r} \\
\vec{B} & =\frac{\vec{u} \times \vec{E}}{c^{2}} \propto \frac{1}{r^{2}} \\
\Rightarrow|\vec{E}| & \propto \frac{1}{r^{2}},|\vec{B}| \propto \frac{1}{r^{2}} \\
\frac{1}{\mu_{0}} \vec{E} & \times \vec{B}=\vec{S} \propto \frac{1}{r^{4}} \Rightarrow \text { Does not radiate }
\end{aligned}
$$

(Or we can use a simpler argument: boost to the rest frame of the charge)
Therefore we need to accelerate the charge to produce radiation. (Proof can be found in Georgi $355-360$ ). Or the following geometrical argument. Goal: to create a "kink" in the electric field: Accelerated Charge!
Consider a charge, accelerated between $t=0$ to $t=\Delta t . a$ is small and $\Delta t$ is small.


It takes time for information to propagate (at the speed of light).
(1) Surface: information that the charge accelerated has only just reached this sphere
(2) Surface: information that the charge moving with constant velocity has reached this sphere Q:What will the "observer" see at $t=t+\Delta t$ ? A: A stationary charge.
Therefore outside (1) the electric field is like the charge has never moved (where the observer lives). Inside (2) the electric field is in the $\hat{r}$ direction. Between (1) and (2) the field must be continuous because there is no source between them. Since $u \equiv a \cdot \Delta t$ is $\ll c$ (where $u$ is the velocity of the
charge after acceleration) then the field lines from A to B are approximately parallel. We have managed to create a "kink"!


What is $E_{\|}$? Use Gauss' Law:


$$
\begin{gathered}
E_{\|}=E_{O u t}=\frac{q}{4 \pi \epsilon_{0} r^{2}}=\text { Electric field outside } \\
E_{\perp}=\frac{-q a_{\perp}}{4 \pi \epsilon_{0} r^{2} c^{2}}
\end{gathered}
$$

This is very important! $E_{\perp}$ at position $\vec{r}$ is due to acceleration which occurred at a retarded time:

$$
\begin{gathered}
t^{\prime}=t-r / c \\
\Rightarrow \vec{E}_{\text {Rad }}(\vec{r}, t)=\frac{-q \vec{a}_{\perp}(t-r / c)}{4 \pi \epsilon_{0} c^{2} r} \\
\Rightarrow \vec{B}_{\text {Rad }} \propto \frac{1}{r} \\
\Rightarrow \vec{S}_{\text {Rad }} \propto \vec{E}_{\text {Rad }} \times \vec{B}_{\text {Rad }} \propto \frac{1}{r^{2}}
\end{gathered}
$$

We are sending energy to the edge of the universe!!

$\vec{r} \gg$ scale of $\vec{a}(t)$ such that the static contributions die out.

$$
\begin{aligned}
& \vec{E}_{R a d}(\vec{r}, t)=\frac{-q \vec{a}_{\perp}(t-r / c)}{4 \pi \epsilon_{0} c^{2} r} \\
& \vec{B}_{R a d}(\vec{r}, t)=\frac{1}{c} \hat{r} \times \vec{E}_{R a d}(\vec{r}, t) \\
& \vec{S}_{R a d}(\vec{r}, t)=\frac{1}{\mu_{0}} \vec{E}_{R a d} \times \vec{B}_{R a d} \\
& \vec{a}_{\perp}=\vec{a}-\vec{a} \cdot \hat{r} \hat{r}, \quad \hat{r}=\frac{\vec{r}}{|\vec{r}|}
\end{aligned}
$$

1. Get $\vec{a}$
2. define $\vec{r}$, get $\vec{a}_{\perp} \vec{a}_{\perp}=\vec{a}-\vec{a} \cdot \hat{r} \hat{r}$
3. $\vec{E}_{\text {Rad }}$
4. $\vec{B}_{\text {Rad }}=\frac{1}{c} \hat{r} \times \vec{E}_{\text {Rad }}$
5. $\vec{S}_{R a d}=\frac{1}{\mu_{0}} \vec{E}_{R a d} \times \vec{B}_{R a d}$
6. Total power: $P(t)=\iiint \vec{S}_{R a d}(\vec{r}, t) \cdot d A \hat{n}=\frac{q^{2}|a(t-r / c)|^{2}}{4 \pi \epsilon_{0} c^{3}}$

Example: harmonically oscillating charge:

where $x=\hat{z} d \cos \omega t$ and $R \gg d$
(1) At a distance $R$ away from the charge in the $\hat{z}$ :

$$
\begin{aligned}
& \quad \vec{a}(t)=\ddot{\vec{x}}(t)=-\hat{z} d \omega^{2} \cos \omega t \\
& \vec{E}_{\text {Rad }}(\vec{r}, t)-=\frac{-q \vec{a} \vec{A}_{\perp}(t-r / c)}{4 \pi \epsilon_{0} c^{2} r} \\
& \vec{a}_{\perp}=\vec{a}-\vec{a} \cdot \hat{r} \hat{r} \text { in this case } \vec{a} \| \vec{z} \\
& \Rightarrow \vec{a}_{\perp}=0
\end{aligned}
$$

$\Rightarrow$ No radiation!
(2) How about $R \hat{y}$ ?

$$
\begin{gathered}
\vec{a}_{\perp}=\vec{a}-\vec{a} \cdot \hat{y} \hat{y}=-\hat{z} d \omega^{2} \cos \omega t \\
\vec{E}_{R a d}(t)=\frac{+q d \omega^{2} \cos (\omega(t-R / c))}{4 \pi \epsilon_{0} c^{2} R} \hat{z} \\
\vec{B}_{R a d}(t)=\frac{1}{c} \hat{y} \times \vec{E}_{R a d}(t)=\frac{q d \omega^{2} \cos (\omega(t-R / c))}{4 \pi \epsilon_{0} c^{3} R} \hat{x}
\end{gathered}
$$

We get harmonic waves with amplitude decreasing versus $R$ (3) How about at $R\left(\frac{1}{2} \hat{y}+\frac{\sqrt{3}}{2} \hat{z}\right)$ ?
( $30^{\circ}$ angle with respect to the $z$-axis in the $y-z$ plane)

$$
\begin{aligned}
\vec{a}_{\perp}(t) & =\vec{a}-(\vec{a} \cdot \hat{r}) \hat{r} \\
& =-\omega^{2} d \cos (\omega t)\left(\hat{z}-\frac{\sqrt{3}}{2}\left(\frac{1}{2} \hat{y}+\frac{\sqrt{3}}{2} \hat{z}\right)\right) \\
& =-\omega^{2} d \cos \omega t\left(\frac{1}{4} \hat{z}-\frac{\sqrt{3}}{4} \hat{y}\right) \\
\vec{E}_{\text {Rad }} & =\frac{q \omega^{2} d}{8 \pi \epsilon_{0} c^{3} R} \cos (\omega(t-R / c))\left(\frac{1}{2} \hat{z}-\frac{\sqrt{3}}{2} \hat{y}\right)
\end{aligned}
$$

Example 2: A particle with charge $q$ is moving on an elliptical orbit

$$
\begin{aligned}
x(t) & =\sqrt{2} A \cos (\omega t) \\
y(t) & =A \sin (\omega t)
\end{aligned}
$$



What are the polarizations of the electric field seen by distant observers on the positive $x, y, z$ axes? First calculate $\vec{a}(t)$

$$
\vec{a}(t)=-\sqrt{2} A \omega^{2} \cos (\omega t) \hat{x}-A \omega^{2} \sin (\omega t) \hat{y}
$$

(1) Observer $R \hat{x}$

$$
\begin{aligned}
\vec{a}_{\perp} & =-A \omega^{2} \sin \omega t \hat{y} \\
\vec{E}_{R a d} & =\frac{q \omega^{2} A}{4 \pi \epsilon_{0} c^{3} R} \sin (\omega(t-R / c)) \quad \text { Linearly polarized }
\end{aligned}
$$

(2) $\hat{y}$ : similarly, also linearly polarized
(3) $\hat{z}$ : elliptically polarized

MIT OpenCourseWare
https://ocw.mit.edu

### 8.03SC Physics III: Vibrations and Waves

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

