
8.03 Lecture 16

We have discussed this system in lecture 8:

Mass can only move up and down in the ŷ direction. We have solved it by “space translation
symmetry.” We obtained the dispersion relation:

ω(k) = T

ma
sin
(
ka

2

)
Where T is string tension, m is mass, a is the distance between masses at equilibrium. Eigenvectors
(where j is the label of the mass):

eikj·a

Today we are doing 2D and 3D system!! In general, we don’t know how to solve those systems!
:( But we know how to solve highly symmetric systems!! If we consider an intinitely long array of
masses:

Where m is the mass, TV , TH are the tensions, and we have ideal strings. Particles can only move
in the ẑ direction. Good news: space translation symmetry! Eigenvectors:

eikxxeikyy

Where x ≡ jxaH and y = jyaV and (jx, jy) are indices.

⇒ ψ(x, y) = Aeikxxeikyy = Aei
~k·~r



We can use the expression above to get the dispersion relation:

ω2 = 4TH
mah

sin2
(
kxaH

2

)
+ 4TV
maV

sin2
(
kyaV

2

)
This is a dispersive medium because ω

|~k|
is not a constant.

At fixed ω: If we consider a 1D bead-string system:

There are two solutions (or eigenvectors of S matrix) which gives angular frequency ω

eikx and e−ikx

This is cos(kx) and sin(kx)!!

cos(kx) = 1
2(eikx + e−ikx)

sin(kx) = 1
2i(e

ikx − e−ikx)

We know from the discussion above, the eigenvector of M−1k matrix is sin or cos. Back to the
two-dimensional case: If we fix the angular frequency to be ω. There are multiple values of kx and
ky which can give the same ω (actually infinite number of choices). This is because kx and ky are
continuous: can be any value before we introduce boundary conditions. If we lower kx a bit we can
increase ky to compensate! Example: if I have dispersion relation of this form:

ω2 = 5 sin2 kx + 5 sin2 ky

There are many possible pairs of kx and ky which gives the same ω!!!

Now we add the wall back in:

ψ(0, y, t) = ψ(LH , y, t) = ψ(x, 0, t) = ψ(x, LV , t) = 0

In this example: LH = 5aH and LV = 4aV
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There are now only four modes of the finite system with the same ω

Ae±ikxxe±ikyy

kx = nxπ

LH
ky = nyπ

LV
LH = 5aH LV = 4aV

and nx runs from 1 to 4 while ny runs from 1 to 3. Linear combinations of

e+ikxxe+ikyy , e+ikxxe−ikyy , e−ikxxe+ikyy , e−ikxxe−ikyy

gives A sin kxx sin kyy which satisfy the boundary conditions.

⇒ ψ(nx,ny)(x, y, t) = A(nx,ny) sin
(
nxπx

LH

)
sin
(
nyπy

LV

)
Discrete case general solution:

ψ(x, y, t) =
∑
nx,ny

A(nx,ny) sin
(
nxπx

LH

)
sin
(
nyπy

LV

)
Continuous case (assuming TH = TV = T ) aH = aV → 0

ω2 = 4T
ma

k2
xa

2

4 + 4T
ma

k2
ya

2

4

= Ta

m
(k2
x + k2

y)

Define the surface mass density, ρ = m/a2, and the surface tension, Ts = T/a

ω2 = Ts
ρs

(k2
x + k2

y) = Ts
ρs

∣∣~k∣∣2
Similar to one dimensional case. Continuous limit gives:

∂2

∂t2
ψ(x, y, t) = v2

(
∂2

∂x2 + ∂2

∂y2

)
ψ(x, y, t)

= v2∇2ψ(x, y, t)

⇒ ∂2

∂t2
ψ(x, y, t) = v2∇2ψ(x, y, t)

ψ ∝ A sin(kxx) sin(kyy) sin(ωt+ φ)
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Where v =
√
Ts/rhos. Similarly in the 3D case:

∂2

∂t2
ψ(x, y, z, t) = v2∇2ψ(x, y, z, t)

Continuous case: 3D sound wave. Example: sound wave in a box

kx = nxπ

a
ky = nyπ

b
kz = nzπ

c
Guess

~ψ ∝ sin(kxx) sin(kyy) sin(kxx) sin(ωt+ φ)
Plug into wave equation:

ω2 = v2(k2
x + k2

y + k2
z)

= v2
((

nxπ

a

)2
+
(
nyπ

b

)2
+
(
nzπ

c

)2
)

Where nx,ny, and nz are integers.

2 and 3D progressive wave:
Simple example: “plane waves”

ψ(~r, t) = Aei(
~k·~r−ωt)
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This can be used to describe EM waves, sound waves, or waves on membranes. If there is no other
medium, this wave will continue forever.
Let’s continue a 2D membrane stretched in the z = 0 plane with surface mass density ρs and surface
tension Ts

ω2 = v2(k2
x + k2

y)

and waves will travel at speed v =
√
Ts
ρs

. To add some excitement:

We place a second membrane on the other side, and our wave approaches this membrane. What
will happen? One would usually expect an incident wave to produce a reflected and transmitted
wave.

ψL = Aei(
~k·~r−ωt)︸ ︷︷ ︸

Incident

+
∑
α

RαAe
i(~kα·~r−ωt)︸ ︷︷ ︸
Reflected

(x ≤ 0)

ψR =
∑
β

TβAe
i(~kβ ·~r−ωt)︸ ︷︷ ︸

Transmitted

(x ≥ 0)
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Where
∑
α and

∑
β sum over all possible ~kα and ~kβ which give angular frequency ω

|kα|2 = ω2 ρs
Ts

= ω2

v2 , |kβ|2 = ω2 ρ
′
s

T ′s
= ω2

v′2

To calculate Rα and Tβ as well as ~kα and ~kβ we need boundary conditions!
At x = z = 0 the membrane cannot break so we need ψL = ψR

ψ(0, y, 0, t) = Aei(kyy−ωt) +
∑
α

RαAe
i(kαyy−ωt) =

∑
β

TβAe
i(kβyy−ωt)

Where the equality is established with the boundary condition. This can only be true when kαy =
kβy = ky. Only when

kαx = −
√
ω2/v2 − k2

y = −kx and kβx =
√
ω2/v′2 − k2

y

We can satisfy the boundary condition.
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We have |~k| sin θ = |~k′| sin θ′

n = c

v
= c

ω
|k|

n′ = c

v′
= c

ω
|~k′|

⇒ n sin θ = n′ sin θ′

Snell’s Law! We have just proved the two MOST IMPORTANT LAWS of geometrical optics!!!

(1.) Reflection: θ1 = θ2

(2.) Snell’s Law: n1 sin θ1 = n2 sin θ2 where n is a refraction index

(3.) It works for water, glass, sound, and light waves!
(4.) If we continue to increase θ1 then

n1
n2

sin θ1 > 1

There is no transmission!
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