8.03 Lecture 16

We have discussed this system in lecture 8:

Mass can only move up and down in the \hat{y} direction. We have solved it by "space translation symmetry." We obtained the dispersion relation:

$$
\omega(k)=\frac{T}{m a} \sin \left(\frac{k a}{2}\right)
$$

Where T is string tension, m is mass, a is the distance between masses at equilibrium. Eigenvectors (where j is the label of the mass):

$$
e^{i k j \cdot a}
$$

Today we are doing 2D and 3D system!! In general, we don't know how to solve those systems! :(But we know how to solve highly symmetric systems!! If we consider an intinitely long array of masses:

Where m is the mass, T_{V}, T_{H} are the tensions, and we have ideal strings. Particles can only move in the \hat{z} direction. Good news: space translation symmetry! Eigenvectors:

$$
e^{i k_{x} x} e^{i k_{y} y}
$$

Where $x \equiv j_{x} a_{H}$ and $y=j_{y} a_{V}$ and $\left(j_{x}, j_{y}\right)$ are indices.

$$
\Rightarrow \psi(x, y)=A e^{i k_{x} x} e^{i k_{y} y}=A e^{i \vec{k} \cdot \vec{r}}
$$

We can use the expression above to get the dispersion relation:

$$
\omega^{2}=\frac{4 T_{H}}{m a_{h}} \sin ^{2}\left(\frac{k_{x} a_{H}}{2}\right)+\frac{4 T_{V}}{m a_{V}} \sin ^{2}\left(\frac{k_{y} a_{V}}{2}\right)
$$

This is a dispersive medium because $\frac{\omega}{|\vec{k}|}$ is not a constant.
At fixed ω : If we consider a 1D bead-string system:

There are two solutions (or eigenvectors of S matrix) which gives angular frequency ω

$$
e^{i k x} \text { and } e^{-i k x}
$$

This is $\cos (k x)$ and $\sin (k x)!!$

$$
\begin{aligned}
\cos (k x) & =\frac{1}{2}\left(e^{i k x}+e^{-i k x}\right) \\
\sin (k x) & =\frac{1}{2 i}\left(e^{i k x}-e^{-i k x}\right)
\end{aligned}
$$

We know from the discussion above, the eigenvector of $M^{-1} k$ matrix is \sin or cos. Back to the two-dimensional case: If we fix the angular frequency to be ω. There are multiple values of k_{x} and k_{y} which can give the same ω (actually infinite number of choices). This is because k_{x} and k_{y} are continuous: can be any value before we introduce boundary conditions. If we lower k_{x} a bit we can increase k_{y} to compensate! Example: if I have dispersion relation of this form:

$$
\omega^{2}=5 \sin ^{2} k_{x}+5 \sin ^{2} k_{y}
$$

There are many possible pairs of k_{x} and k_{y} which gives the same $\omega!!!$

Now we add the wall back in:

$$
\psi(0, y, t)=\psi\left(L_{H}, y, t\right)=\psi(x, 0, t)=\psi\left(x, L_{V}, t\right)=0
$$

In this example: $L_{H}=5 a_{H}$ and $L_{V}=4 a_{V}$

There are now only four modes of the finite system with the same ω

$$
\begin{gathered}
A e^{ \pm i k_{x} x} e^{ \pm i k_{y} y} \\
k_{x}=\frac{n_{x} \pi}{L_{H}} \quad k_{y}=\frac{n_{y} \pi}{L_{V}} \\
L_{H}=5 a_{H} \quad L_{V}=4 a_{V}
\end{gathered}
$$

and n_{x} runs from 1 to 4 while n_{y} runs from 1 to 3 . Linear combinations of

$$
e^{+i k_{x} x} e^{+i k_{y} y}, e^{+i k_{x} x} e^{-i k_{y} y}, e^{-i k_{x} x} e^{+i k_{y} y}, e^{-i k_{x} x} e^{-i k_{y} y}
$$

gives $A \sin k_{x} x \sin k_{y} y$ which satisfy the boundary conditions.

$$
\Rightarrow \psi_{\left(n_{x}, n_{y}\right)}(x, y, t)=A_{\left(n_{x}, n_{y}\right)} \sin \left(\frac{n_{x} \pi x}{L_{H}}\right) \sin \left(\frac{n_{y} \pi y}{L_{V}}\right)
$$

Discrete case general solution:

$$
\psi(x, y, t)=\sum_{n_{x}, n_{y}} A_{\left(n_{x}, n_{y}\right)} \sin \left(\frac{n_{x} \pi x}{L_{H}}\right) \sin \left(\frac{n_{y} \pi y}{L_{V}}\right)
$$

Continuous case (assuming $T_{H}=T_{V}=T$) $a_{H}=a_{V} \rightarrow 0$

$$
\begin{aligned}
\omega^{2} & =\frac{4 T}{m a} \frac{k_{x}^{2} a^{2}}{4}+\frac{4 T}{m a} \frac{k_{y}^{2} a^{2}}{4} \\
& =\frac{T a}{m}\left(k_{x}^{2}+k_{y}^{2}\right)
\end{aligned}
$$

Define the surface mass density, $\rho=m / a^{2}$, and the surface tension, $T_{s}=T / a$

$$
\omega^{2}=\frac{T_{s}}{\rho_{s}}\left(k_{x}^{2}+k_{y}^{2}\right)=\frac{T_{s}}{\rho_{s}}|\vec{k}|^{2}
$$

Similar to one dimensional case. Continuous limit gives:

$$
\begin{aligned}
\frac{\partial^{2}}{\partial t^{2}} \psi(x, y, t) & =v^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \psi(x, y, t) \\
& =v^{2} \nabla^{2} \psi(x, y, t) \\
\Rightarrow & \frac{\partial^{2}}{\partial t^{2}} \psi(x, y, t)=v^{2} \nabla^{2} \psi(x, y, t) \\
\psi & \propto A \sin \left(k_{x} x\right) \sin \left(k_{y} y\right) \sin (\omega t+\phi)
\end{aligned}
$$

Where $v=\sqrt{T_{s} / r h o_{s}}$. Similarly in the 3D case:

$$
\frac{\partial^{2}}{\partial t^{2}} \psi(x, y, z, t)=v^{2} \nabla^{2} \psi(x, y, z, t)
$$

Continuous case: 3D sound wave. Example: sound wave in a box

Guess

$$
\vec{\psi} \propto \sin \left(k_{x} x\right) \sin \left(k_{y} y\right) \sin \left(k_{x} x\right) \sin (\omega t+\phi)
$$

Plug into wave equation:

$$
\begin{aligned}
\omega^{2} & =v^{2}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right) \\
& =v^{2}\left(\left(\frac{n_{x} \pi}{a}\right)^{2}+\left(\frac{n_{y} \pi}{b}\right)^{2}+\left(\frac{n_{z} \pi}{c}\right)^{2}\right)
\end{aligned}
$$

Where n_{x}, n_{y}, and n_{z} are integers.

2 and 3D progressive wave:
Simple example: "plane waves"

$$
\psi(\vec{r}, t)=A e^{i(\vec{k} \cdot \vec{r}-\omega t)}
$$

This can be used to describe EM waves, sound waves, or waves on membranes. If there is no other medium, this wave will continue forever.
Let's continue a 2D membrane stretched in the $z=0$ plane with surface mass density ρ_{s} and surface tension T_{s}

$$
\omega^{2}=v^{2}\left(k_{x}^{2}+k_{y}^{2}\right)
$$

and waves will travel at speed $v=\sqrt{\frac{T_{s}}{\rho_{s}}}$. To add some excitement:

We place a second membrane on the other side, and our wave approaches this membrane. What will happen? One would usually expect an incident wave to produce a reflected and transmitted wave.

$$
\begin{aligned}
& \psi_{L}=A \underbrace{e^{i(\vec{k} \cdot \vec{r}-\omega t)}+\sum_{\alpha} R_{\alpha} A \underbrace{e^{i\left(\vec{k}_{\alpha} \cdot \vec{r}-\omega t\right)}}_{\text {Reflected }} \quad(x \leq 0))(x)=0)}_{\text {Incident }} \quad(x) \\
& \psi_{R}=\sum_{\beta} T_{\beta} A \underbrace{e^{i\left(\vec{k}_{\beta} \cdot \vec{r}-\omega t\right)}}_{\text {Transmitted }} \quad(x \geq 0)
\end{aligned}
$$

Where \sum_{α} and \sum_{β} sum over all possible \vec{k}_{α} and \vec{k}_{β} which give angular frequency ω

$$
\left|k_{\alpha}\right|^{2}=\omega^{2} \frac{\rho_{s}}{T_{s}}=\frac{\omega^{2}}{v^{2}}, \quad\left|k_{\beta}\right|^{2}=\omega^{2} \frac{\rho_{s}^{\prime}}{T_{s}^{\prime}}=\frac{\omega^{2}}{v^{\prime 2}}
$$

To calculate R_{α} and T_{β} as well as \vec{k}_{α} and \vec{k}_{β} we need boundary conditions! At $x=z=0$ the membrane cannot break so we need $\psi_{L}=\psi_{R}$

$$
\psi(0, y, 0, t)=A e^{i\left(k_{y} y-\omega t\right)}+\sum_{\alpha} R_{\alpha} A e^{i\left(k_{\alpha y} y-\omega t\right)}=\sum_{\beta} T_{\beta} A e^{i\left(k_{\beta y} y-\omega t\right)}
$$

Where the equality is established with the boundary condition. This can only be true when $k_{\alpha y}=$ $k_{\beta y}=k_{y}$. Only when

$$
k_{\alpha x}=-\sqrt{\omega^{2} / v^{2}-k_{y}^{2}}=-k_{x} \text { and } k_{\beta x}=\sqrt{\omega^{2} / v^{\prime 2}-k_{y}^{2}}
$$

We can satisfy the boundary condition.

We have $|\vec{k}| \sin \theta=\left|\vec{k}^{\prime}\right| \sin \theta^{\prime}$

$$
\begin{gathered}
n=\frac{c}{v}=\frac{c}{\omega}|k| \\
n^{\prime}=\frac{c}{v^{\prime}}=\frac{c}{\omega}\left|\overrightarrow{k^{\prime}}\right| \\
\Rightarrow n \sin \theta=n^{\prime} \sin \theta^{\prime}
\end{gathered}
$$

Snell's Law! We have just proved the two MOST IMPORTANT LAWS of geometrical optics!!!
(1.) Reflection: $\theta_{1}=\theta_{2}$

(2.) Snell's Law: $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$ where n is a refraction index

(3.) It works for water, glass, sound, and light waves!
(4.) If we continue to increase θ_{1} then

$$
\frac{n_{1}}{n_{2}} \sin \theta_{1}>1
$$

There is no transmission!

MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

