### 8.03 Lecture 9

Last time:


System $2 \quad \downarrow a \rightarrow 0, N \rightarrow \infty \quad a<\frac{2 \pi}{k}=\lambda$


$$
\text { (1) : - } \ddot{x}=M^{-1} k x \quad M^{-1} k A=\omega^{2} A
$$

$j$ th term of $M^{-1} k A$ : $\quad \omega^{2} A_{j}=\frac{T}{m a}\left(-A_{j-1}+2 A_{j}-A_{j+1}\right)$
In the continuum limit: $\quad \omega^{2} A(x)=\frac{T}{m a}(-A(x-a)+2 A(x)-A(x-a))$
In the Taylor series:

$$
\begin{aligned}
& \approx \frac{T}{m a}\left(-\frac{\partial^{2} A(x)}{\partial x^{2}} a^{2}\right) \\
(2): & =-\frac{T}{\rho_{L}} \frac{\partial^{2} A(x)}{\partial x^{2}} \\
\Rightarrow & M^{-1} k \rightarrow-\frac{T}{\rho_{L}} \frac{\partial^{2}}{\partial x^{2}} \text { and } \psi_{j} \rightarrow \psi(x, t)
\end{aligned}
$$

From (1) and (2):

$$
\Rightarrow \frac{\partial^{2} \psi(x, t)}{\partial t^{2}}=\frac{T}{\rho_{L}} \frac{\partial^{2} \psi(x, t)}{\partial x^{2}}
$$

Original dispersion relation:

$$
\omega^{2}=4 \frac{T}{m a} \sin ^{2}(k a / 2)
$$

From the fact that $a \ll 2 \pi / k \Rightarrow k a$ is very small.

$$
\begin{aligned}
& \omega^{2} \approx \frac{4 T}{m a}\left(\frac{k a}{2}\right)^{2}=\frac{T}{\rho_{L}} k^{2} \\
& v_{p}=\frac{\omega}{k}=\sqrt{\frac{T}{\rho_{L}}} \\
& \Rightarrow \frac{\partial^{2} \psi(x, t)}{\partial t^{2}}=v_{p}^{2} \frac{\partial^{2} \psi(x, t)}{\partial x^{2}}
\end{aligned}
$$

The last equation is known as the "wave equation." We get an infinite number of coupled equations of motion. Come back to the original question: What are the normal modes?

$$
\psi(x, t)=A(x) B(t)
$$

We separate $\psi(x, t)$ into a function that controls the time evolution and a different function that controls the amplitude. Plugging our new $\psi$ into the wave equation:

$$
\begin{aligned}
A(x) \frac{\partial^{2} B(t)}{\partial t^{2}} & =v_{p}^{2} B(t) \frac{\partial^{2} A(x)}{\partial x^{2}} \\
\frac{1}{v_{p}^{2} B(t)} \frac{\partial^{2} B(t)}{\partial t^{2}} & =\frac{1}{A(x)} \frac{\partial^{2} A(x)}{\partial x^{2}}
\end{aligned}
$$

This equation must be satisfied for all $x$ and $t$ and so both sides must be equal to a constant. (If this is unfamiliar, think about varying $x$ without varying $t$; the only way the two sides stay equal is if they are constant.) Now we have:

$$
\frac{1}{v_{p}^{2} B(t)} \frac{\partial^{2} B(t)}{\partial t^{2}}=\frac{1}{A(x)} \frac{\partial^{2} A(x)}{\partial x^{2}}=-k_{m}^{2}
$$

Solving the left hand side first:

$$
\begin{aligned}
\frac{1}{v_{p}^{2} B(t)} \frac{\partial^{2} B(t)}{\partial t^{2}} & =-k_{m}^{2} \\
\frac{\partial^{2} B(t)}{\partial t^{2}} & =-k_{m}^{2} v_{p}^{2} B(t) \\
\Rightarrow B(t) & =B_{m} \sin \left(\omega_{m} t+\beta_{m}\right)
\end{aligned}
$$

Where $\omega_{m} \equiv v_{p} k_{m}$. Moving to the right hand side:

$$
\begin{aligned}
\frac{1}{A(x)} \frac{\partial^{2} A(x)}{\partial x^{2}} & =-k_{m}^{2} \\
\Rightarrow \quad A(t) & =C_{m} \sin \left(k_{m} x+\alpha_{m}\right)
\end{aligned}
$$

We now have an expression for the $m$ th normal mode:

$$
\psi_{m}(x, t)=A_{m} \sin \left(\omega_{m} t+\beta_{m}\right) \sin \left(k_{m} x+\alpha_{m}\right)
$$

$\omega_{m}=v_{p} k_{m}$ is decided by the properties of the string. The two unknowns, $\alpha_{m}$ and $k_{m}$, are decided by the boundary conditions. $A_{m}, \beta_{m}$ are decided by the initial conditions. (Shown later).
*Look at the structure of this normal mode solution. Let's stop and think about what we have learned:
(1) Each point mass on the string is oscillating harmonically (only up and down; not in the horizontal direction!) at the same frequency and phase!
(2) Their relative amplitude: sine function! (The same as the discrete system)

Need to determine the unknown coefficients step by step. Let's take a concrete example: suppose we have a string, one end is fixed and the other end is open.


Boundary conditions:
(1) $x=0 \Rightarrow \psi(0, t)=0$
(2) $x=L \Rightarrow \frac{\partial \psi}{\partial x}(L, t)=0$

If $\frac{\partial \psi(L, t)}{\partial x} \neq 0$ then there is a net force (the tension does not cancel with the normal force).


What are the normal modes?

$$
\begin{aligned}
(1) \Rightarrow \psi_{m}(0, t) & =A_{m} \sin \left(\alpha_{m}\right) \sin \left(\omega_{m} t+\beta_{m}\right)=0 \\
\Rightarrow \alpha_{m} & =0 \\
\text { At } x=L: \frac{\partial \psi_{m}(L, t)}{\partial x} & =0=A_{m} k_{m} \sin \left(\omega_{m} t+\beta_{m}\right) \cos \left(K_{m} L\right) \\
\Rightarrow k_{m} L & =\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \cdots \\
k_{m} & =\frac{(2 m-1) \pi}{2 L}
\end{aligned}
$$

For the first mode, $m=1$ :

$$
k_{1}=\frac{\pi}{2 L} \quad \lambda_{1}=\frac{2 \pi}{k_{1}}=4 L \quad \omega_{1}=v k_{1}=\sqrt{\frac{T}{\mu}} \frac{\pi}{2 L}
$$



The second mode, $m=2$ :

$$
k_{2}=\frac{3 \pi}{2 L} \quad \lambda_{2}=\frac{4}{3} L
$$



The third mode, $m=3$ :

$$
k_{3}=\frac{5 \pi}{2 L} \quad \lambda_{3}=\frac{4}{5} L
$$



The general solution:

$$
\psi(x, t)=\sum_{m=1}^{\infty} A_{m} \sin \left(\omega_{m} t+\beta_{m}\right) \sin \left(k_{m} x+\alpha_{m}\right)
$$

From the boundary conditions:

$$
\begin{gathered}
\alpha_{m}=0 \quad k_{m}=\frac{(2 m-1) \pi}{2 L} \\
\psi(x, t)=\sum_{m=1}^{\infty} A_{m} \sin \left[\frac{(2 m-1) v \pi}{2 L} t+\beta_{m}\right] \sin \left[\frac{(2 m-1) \pi}{2 L} x+\right]
\end{gathered}
$$

How do we extract $A_{m}$ and $\beta_{m}$ ?


Suppose at $t=0$ the string looks like this. Also, the string is at rest.

Initial conditions: (a) $\dot{\psi}(x, 0)=0$ and (b) $\psi(x, 0)$ is known.
From (a) we get:

$$
\begin{array}{r}
\dot{\psi}(x, t)=\sum_{m=1}^{\infty} A_{m} \omega_{m} \cos \left(\omega_{m} t+\beta_{m}\right) \sin \left(k_{m} x+\alpha_{m}\right) \\
\dot{\psi}(x, t)=0 \Rightarrow \beta_{m}=\frac{\pi}{2} \Rightarrow \psi(x, 0)=\sum_{m=1}^{\infty} A_{m} \sin \left(\frac{(2 m-1) \pi}{2 L} x\right)
\end{array}
$$

(b) How do I extract $A_{m}$ from the given $\psi(x, 0)$ ? Use the "orthogonality" of the sine functions:

$$
\int_{0}^{L} \sin \left(k_{m} x\right) \sin \left(k_{n} x\right) d x=\left\{\begin{array}{c}
\frac{L}{2} \text { if } m=n  \tag{1}\\
0 \text { if } m \neq n
\end{array}\right.
$$

We can extract $A_{m}$ by:

$$
A_{m}=\frac{2}{L} \int_{0}^{L} \psi(x, 0) \sin \left(k_{m} x\right) d x
$$

In this example:

$$
\begin{aligned}
A_{m} & =\frac{2}{L} \int_{L / 2}^{L} h \sin \left(k_{m} x\right) d x \\
& =\frac{2}{L} \frac{-h}{k_{m}}\left[\cos \left(k_{m} L\right)-\cos \left(k_{m} \frac{L}{2}\right)\right]
\end{aligned}
$$

Where

$$
k_{m}=\frac{(2 m-1) \pi}{2 L}
$$

MIT OpenCourseWare
https://ocw.mit.edu

### 8.03SC Physics III: Vibrations and Waves

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

