
8.03 Lecture 9

Last time:

(1) : −ẍ = M−1kx M−1kA = ω2A

jth term of M−1kA: ω2Aj = T
ma(−Aj−1 + 2Aj −Aj+1)

In the continuum limit: ω2A(x) = T
ma(−A(x− a) + 2A(x)−A(x− a))

In the Taylor series:

≈ T

ma

(
−∂

2A(x)
∂x2 a2

)

(2) : = − T

ρL

∂2A(x)
∂x2

⇒ M−1k → − T

ρL

∂2

∂x2 and ψj → ψ(x, t)

From (1) and (2):

⇒ ∂2ψ(x, t)
∂t2

= T

ρL

∂2ψ(x, t)
∂x2

Original dispersion relation:
ω2 = 4 T

ma
sin2(ka/2)

From the fact that a << 2π/k ⇒ ka is very small.

ω2 ≈ 4T
ma

(
ka

2

)2
= T

ρL
k2

vp = ω

k
=
√
T

ρL

⇒∂2ψ(x, t)
∂t2

= v2
p

∂2ψ(x, t)
∂x2
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The last equation is known as the “wave equation.” We get an infinite number of coupled equations
of motion. Come back to the original question: What are the normal modes?

ψ(x, t) = A(x)B(t)

We separate ψ(x, t) into a function that controls the time evolution and a different function that
controls the amplitude. Plugging our new ψ into the wave equation:

A(x)∂
2B(t)
∂t2

= v2
pB(t)∂

2A(x)
∂x2

1
v2
pB(t)

∂2B(t)
∂t2

= 1
A(x)

∂2A(x)
∂x2

This equation must be satisfied for all x and t and so both sides must be equal to a constant. (If
this is unfamiliar, think about varying x without varying t; the only way the two sides stay equal
is if they are constant.) Now we have:

1
v2
pB(t)

∂2B(t)
∂t2

= 1
A(x)

∂2A(x)
∂x2 = −k2

m

Solving the left hand side first:

1
v2
pB(t)

∂2B(t)
∂t2

= −k2
m

∂2B(t)
∂t2

= −k2
mv

2
pB(t)

⇒ B(t) = Bm sin(ωmt+ βm)

Where ωm ≡ vpkm. Moving to the right hand side:

1
A(x)

∂2A(x)
∂x2 = −k2

m

⇒ A(t) = Cm sin(kmx+ αm)

We now have an expression for the mth normal mode:

ψm(x, t) = Am sin(ωmt+ βm) sin(kmx+ αm)

ωm = vpkm is decided by the properties of the string. The two unknowns, αm and km, are decided
by the boundary conditions. Am, βm are decided by the initial conditions. (Shown later).
*Look at the structure of this normal mode solution. Let’s stop and think about what we have
learned:
(1) Each point mass on the string is oscillating harmonically (only up and down; not in the horizontal
direction!) at the same frequency and phase!
(2) Their relative amplitude: sine function! (The same as the discrete system)
Need to determine the unknown coefficients step by step. Let’s take a concrete example: suppose
we have a string, one end is fixed and the other end is open.
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Boundary conditions:

(1) x = 0 ⇒ ψ(0, t) = 0

(2) x = L ⇒ ∂ψ

∂x
(L, t) = 0

If ∂ψ(L,t)
∂x 6= 0 then there is a net force (the tension does not cancel with the normal force).

What are the normal modes?

(1) ⇒ ψm(0, t) = Am sin(αm) sin(ωmt+ βm) = 0
⇒ αm = 0

(2) ⇒ ∂ψm
∂x

= Amkm sin(ωmt+ βm) cos(kmx+ αm)

At x = L : ∂ψm(L, t)
∂x

= 0 = Amkm sin(ωmt+ βm) cos(KmL)

⇒ kmL = π

2 ,
3π
2 ,

5π
2 , · · ·

km = (2m− 1)π
2L
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For the first mode, m = 1:

k1 = π

2L λ1 = 2π
k1

= 4L ω1 = vk1 =
√
T

µ

π

2L

The second mode, m = 2:
k2 = 3π

2L λ2 = 4
3L

The third mode, m = 3:
k3 = 5π

2L λ3 = 4
5L

The general solution:

ψ(x, t) =
∞∑
m=1

Am sin(ωmt+ βm) sin(kmx+ αm)
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From the boundary conditions:

αm = 0 km = (2m− 1)π
2L

ψ(x, t) =
∞∑
m=1

Am sin
[(2m− 1)vπ

2L t+ βm

]
sin
[(2m− 1)π

2L x+
]

How do we extract Am and βm?

Suppose at t = 0 the string looks like this. Also,
the string is at rest.

Initial conditions: (a) ψ̇(x, 0) = 0 and (b) ψ(x, 0) is known.
From (a) we get:

ψ̇(x, t) =
∞∑
m=1

Amωm cos(ωmt+ βm) sin(kmx+ αm)

ψ̇(x, t) = 0⇒ βm = π

2 ⇒ ψ(x, 0) =
∞∑
m=1

Am sin
((2m− 1)π

2L x

)

(b) How do I extract Am from the given ψ(x, 0)? Use the “orthogonality” of the sine functions:

∫ L

0
sin(kmx) sin(knx)dx =

{
L
2 if m = n

0 if m 6= n
(1)

We can extract Am by:

Am = 2
L

∫ L

0
ψ(x, 0) sin(kmx)dx

In this example:

Am = 2
L

∫ L

L/2
h sin(kmx)dx

= 2
L

−h
km

[
cos(kmL)− cos(km

L

2 )
]

Where
km = (2m− 1)π

2L
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