8.03 Lecture 5

We consider the highly idealized system:

Where neither block is initially moving, but the second block is displaced at a small angle at $t=0$. There is no drag force, the springs are ideal. We want to predict the motion at arbitrary times. Define the coordinate system where \vec{x}_{1} and \vec{x}_{2} are measured from the equilibrium position. The \hat{x} direction is to the right and the \hat{y} direction is up.

\hat{y} direction:

$$
\begin{aligned}
& m \ddot{y}_{1}=T_{1} \cos \theta_{1}-m g \\
& \hat{x} \text { direction: } \\
& m \ddot{x}_{1}=-T_{1} \sin \theta_{1}+k\left(x_{2}-x_{1}\right)
\end{aligned}
$$

Implementing the small angle approximation: $\Rightarrow \cos \theta_{1} \approx 1 \sin \theta_{1} \approx \theta_{1}$
From the \hat{y} direction we get $T_{1}=m g$

$$
\begin{aligned}
m \ddot{x}_{1} & =-T_{1} \theta_{1}+k\left(x_{2}-x_{1}\right) \\
& =-m g \frac{x_{1}}{l} k\left(x_{2}-x_{1}\right) \\
m \ddot{x}_{1} & =-\left(k+\frac{m g}{l}\right) x_{1}+k x_{2} \\
\text { Similarly } m \ddot{x}_{2} & =k x_{1}-\left(k+\frac{m g}{l}\right) x_{2}
\end{aligned}
$$

Convert everything to matrix form (recall $M \ddot{X}=-K X$)

$$
\begin{gathered}
X=\binom{x_{1}}{x_{2}} \quad K=\left(\begin{array}{cc}
k+m g / l & -k \\
-k & k+m g / l
\end{array}\right) \quad M=\left(\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right) \\
M^{-1} K=\left(\begin{array}{cc}
k / m+g / l & -k / m \\
-k / m & k / m+g / l
\end{array}\right)
\end{gathered}
$$

Our equation of motion is $\ddot{X}=-M^{-1} K X$. We need to solve the eigenvalue problem. This is easiest if we switch to complex notation, define: $X=\operatorname{Re}[Z]$ and $Z=e^{i(\omega t+\phi)} A$. The equation of motion becomes

$$
\omega^{2} A=M^{-1} K A
$$

and we need to solve

$$
\begin{gathered}
\operatorname{det}\left(M^{-1} K-\omega^{2} I\right) A=0 \\
M^{-1} K-\omega^{2} I=\left(\begin{array}{cc}
g / l+k / m-\omega^{2} & -k / m \\
-k / m & g / l+k / m-\omega^{2}
\end{array}\right) \\
\left(g / l+k / m-\omega^{2}\right)^{2}-(k / m)^{2}=0 \\
\left(g / l+k / m-\omega^{2}\right)= \pm(k / m) \\
\Rightarrow \omega^{2}=\frac{g}{l}, \frac{g}{l}+\frac{2 k}{m}
\end{gathered}
$$

Where we define ω_{1}^{2} as the first and ω_{2}^{2} as the second solution.
First examine 1: $\omega^{2}=\frac{g}{l}$

$$
\left(M^{-1} K-\omega^{2} I\right) A=\left(\begin{array}{cc}
k / m & -k / m \\
-k / m & k / m
\end{array}\right)\binom{A_{1}}{A_{2}}=0 \Rightarrow A^{(1)}=\binom{1}{1}
$$

Next examine 2: $\omega^{2}=\frac{g}{l}+\frac{2 k}{m}$

$$
\left(M^{-1} K-\omega^{2} I\right) A=\left(\begin{array}{ll}
-k / m & -k / m \\
-k / m & -k / m
\end{array}\right)\binom{A_{1}}{A_{2}}=0 \Rightarrow A^{(2)}=\binom{1}{-1}
$$

Go back to $\mathrm{X}: X=\operatorname{Re}[Z]=\operatorname{Re}\left[e^{i(\omega t+\phi)} A\right]$

$$
\begin{aligned}
X^{(1)} & =\cos \left(\omega_{1} t+\phi_{1}\right) A^{(1)} \\
X^{(2)} & =\cos \left(\omega_{2} t+\phi_{2}\right) A^{(2)}
\end{aligned}
$$

Where $\omega_{1} \equiv \sqrt{g / l}$ and $\omega_{2} \equiv \sqrt{g / l+2 k / m}$ as above. The full solution is then:

$$
\begin{aligned}
& x_{1}=\alpha \cos \left(\omega_{1} t+\phi_{1}\right)+\beta \cos \left(\omega_{2} t+\phi_{2}\right) \\
& x_{2}=\alpha \cos \left(\omega_{1} t+\phi_{1}\right)-\beta \cos \left(\omega_{2} t+\phi_{2}\right)
\end{aligned}
$$

Where the initial conditions can be used to determine $\alpha, \beta, \phi_{1}, \phi_{2}$. Implementing our initial conditions from above we find:

$$
\alpha=x_{0} / 2 \quad \beta=-x_{0} / 2 \quad \phi_{1}=\phi_{2}=0
$$

Rewriting our full solution:

$$
\begin{aligned}
& x_{1}=\frac{x_{0}}{2}\left(\cos \omega_{1} t-\cos \omega_{2} t\right) \\
& x_{2}=\frac{x_{0}}{2}\left(\cos \omega_{1} t+\cos \omega_{2} t\right)
\end{aligned}
$$

Or if we implement some trig identities:

$$
\begin{aligned}
& x_{1}=-x_{0} \sin \left(\frac{\omega_{1}+\omega_{2}}{2} t\right) \sin \left(\frac{\omega_{1}-\omega_{2}}{2} t\right) \\
& x_{2}=x_{0} \cos \left(\frac{\omega_{1}+\omega_{2}}{2} t\right) \cos \left(\frac{\omega_{1}-\omega_{2}}{2} t\right)
\end{aligned}
$$

If $\omega_{1} \approx \omega_{2}$ (e.g. $\left.\omega_{1}=0.9 \omega_{2}\right)$

$$
\frac{\omega_{1}+\omega_{2}}{2}=.95 \omega_{2} \quad \frac{\omega_{1}-\omega_{2}}{2}=-0.05 \omega_{2}
$$

We get two distinct waves: a carrier (high frequency) and the "beat" (low frequency) with the periods as shown.
We can define a "normal coordinate:" $U=\binom{U_{1}}{U_{2}} \equiv\binom{x_{1}+x_{2}}{x_{1}-x_{2}}$

$$
\begin{aligned}
U_{1} & =2 A \cos \left(\omega_{A} t+\phi_{1}\right) \\
U_{2} & =2 B \cos \left(\omega_{B} t+\phi_{2}\right) \\
m\left(\ddot{x}_{1}+\ddot{x}_{2}\right) & =-\left(\frac{m g}{l}\right)\left(x_{1}+x_{2}\right) \\
m\left(\ddot{x}_{1}-\ddot{x}_{2}\right) & =-\left(\frac{m g}{l}+2 k\right)\left(x_{1}-x_{2}\right)
\end{aligned}
$$

We've successfully decoupled the equations of motion!

$$
\begin{aligned}
\Rightarrow m \ddot{U}_{1} & =-\left(\frac{m g}{l}\right) U_{1} \\
m \ddot{U}_{2} & =-\left(\frac{m g}{l}+2 k\right) U_{2}
\end{aligned}
$$

Where U_{1} (and U_{2}) are oscillating harmonically at $\omega_{1}\left(\right.$ and $\left.\omega_{2}\right)!!!!$

MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

