
8.03 Lecture 5

We consider the highly idealized system:

Where neither block is initially moving, but the second block is displaced at a small angle at t = 0.
There is no drag force, the springs are ideal. We want to predict the motion at arbitrary times.
Define the coordinate system where ~x1 and ~x2 are measured from the equilibrium position. The x̂
direction is to the right and the ŷ direction is up.

ŷ direction:
mÿ1 = T1 cos θ1 −mg

x̂ direction:
mẍ1 = −T1 sin θ1 + k(x2 − x1)

Implementing the small angle approximation: ⇒ cos θ1 ≈ 1 sin θ1 ≈ θ1
From the ŷ direction we get T1 = mg

mẍ1 = −T1θ1 + k(x2 − x1)

= −mgx1
l
k(x2 − x1)

mẍ1 = −
(
k + mg

l

)
x1 + kx2

Similarly mẍ2 = kx1 −
(
k + mg

l

)
x2
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Convert everything to matrix form (recall MẌ = −KX)

X =
(
x1
x2

)
K =

(
k +mg/l −k
−k k +mg/l

)
M =

(
m 0
0 m

)

M−1K =
(
k/m+ g/l −k/m
−k/m k/m+ g/l

)
Our equation of motion is Ẍ = −M−1KX. We need to solve the eigenvalue problem. This is
easiest if we switch to complex notation, define: X =Re[Z] and Z = ei(ωt+φ)A. The equation of
motion becomes

ω2A = M−1KA

and we need to solve
det(M−1K − ω2I)A = 0

M−1K − ω2I =
(
g/l + k/m− ω2 −k/m

−k/m g/l + k/m− ω2

)

(g/l + k/m− ω2)2 − (k/m)2 = 0
(g/l + k/m− ω2) = ±(k/m)

⇒ ω2 = g

l
,
g

l
+ 2k
m

Where we define ω2
1 as the first and ω2

2 as the second solution.
First examine 1: ω2 = g

l

(M−1K − ω2I)A =
(
k/m −k/m
−k/m k/m

)(
A1
A2

)
= 0 ⇒ A(1) =

(
1
1

)
Next examine 2: ω2 = g

l + 2k
m

(M−1K − ω2I)A =
(
−k/m −k/m
−k/m −k/m

)(
A1
A2

)
= 0 ⇒ A(2) =

(
1
−1

)
Go back to X: X =Re[Z]=Re[ei(ωt+φ)A]

X(1) = cos (ω1t+ φ1)A(1)

X(2) = cos (ω2t+ φ2)A(2)

Where ω1 ≡
√
g/l and ω2 ≡

√
g/l + 2k/m as above. The full solution is then:

x1 = α cos (ω1t+ φ1) + β cos (ω2t+ φ2)
x2 = α cos (ω1t+ φ1) − β cos (ω2t+ φ2)

Where the initial conditions can be used to determine α, β, φ1, φ2. Implementing our initial condi-
tions from above we find:

α = x0/2 β = −x0/2 φ1 = φ2 = 0
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Rewriting our full solution:

x1 = x0
2 (cosω1t− cosω2t)

x2 = x0
2 (cosω1t+ cosω2t)

Or if we implement some trig identities:

x1 = −x0 sin
(
ω1 + ω2

2 t

)
sin
(
ω1 − ω2

2 t

)
x2 = x0 cos

(
ω1 + ω2

2 t

)
cos

(
ω1 − ω2

2 t

)
If ω1 ≈ ω2 (e.g. ω1 = 0.9ω2)

ω1 + ω2
2 = .95ω2

ω1 − ω2
2 = −0.05ω2

We get two distinct waves: a carrier (high frequency) and the “beat” (low frequency) with the
periods as shown.

We can define a “normal coordinate:” U =
(
U1
U2

)
≡
(
x1 + x2
x1 − x2

)
U1 = 2A cos (ωAt+ φ1)
U2 = 2B cos (ωBt+ φ2)

m(ẍ1 + ẍ2) = −
(
mg

l

)
(x1 + x2)

m(ẍ1 − ẍ2) = −
(
mg

l
+ 2k

)
(x1 − x2)
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We’ve successfully decoupled the equations of motion!

⇒ mÜ1 = −
(
mg

l

)
U1

mÜ2 = −
(
mg

l
+ 2k

)
U2

Where U1 (and U2) are oscillating harmonically at ω1 (and ω2)!!!!
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