Since $\epsilon_{0} \mu_{0} \vec{S}=p_{\text {em }}$

$$
\begin{aligned}
\vec{F} & =\oint_{S} T \cdot d \vec{a}-\epsilon_{0} \mu_{0} \frac{d}{d t} \int_{V} \vec{S} d \tau=\frac{d P_{\text {mechanical }}}{d t} \\
\frac{d W}{d t} & =-\frac{d}{d t} \int_{V} \frac{1}{2}\left[\epsilon_{0} E^{2}+\frac{1}{\mu_{0}} B^{2}\right] d \tau-\int_{S} \frac{1}{\mu_{0}} \vec{E} \times \vec{B} d \vec{a}
\end{aligned}
$$

First term is energy stored in fields and secon term is enrgy flowing in and out of region

| $\mathbf{P}=$ total momentum |
| :---: | :---: |
| $p=$ momentum density |

$$
\begin{aligned}
& \overrightarrow{\mathbf{P}_{\mathrm{em}}}=\mu_{0} \epsilon_{0} \int_{V} \vec{S} d \tau \quad \text { momentum in E, B fields } \\
& \oint T \cdot d \vec{a} \Longleftrightarrow \quad \text { momentum flux through a surface }
\end{aligned}
$$

Conservation of Momentum for Electrodynamics

$$
\frac{\partial}{\partial t}\left(p_{\mathrm{em}}+p_{\text {mechanical }}\right)=\vec{\nabla} \cdot T
$$

T_{ij} - momentum in i direction through a surface, normal in j-direction.

$$
\begin{gathered}
\vec{B}=\frac{\mu_{0}}{2 \pi} \cdot \frac{I}{r} \hat{\phi} \quad \vec{E}=\frac{1}{2 \pi \epsilon_{0}} \cdot \frac{\lambda}{r} \hat{r} \\
\vec{S}=\frac{\lambda I}{4 \pi^{2} \epsilon_{0} r^{2}} \hat{z} \longrightarrow \text { energy moving to the right }
\end{gathered}
$$

Answer: field lines will "repel" forces balanced out!

Find electromagnetic momentum (in fields)

$$
\begin{aligned}
\overrightarrow{\mathbf{P}_{\mathrm{em}}}= & \mu_{0} \epsilon_{0} \int_{V} \vec{S} d \tau=\mu_{0} \frac{\lambda I}{4 \pi^{2}} \int_{V} \frac{1}{r^{2}} d \tau \\
& =\quad \mu_{0} \frac{\lambda I}{4 \pi^{2}} \int \frac{1}{r^{2}} l \cdot 2 \pi \cdot r d r \hat{z} \\
\overrightarrow{\mathbf{P}_{\mathrm{em}}}= & \frac{\mu_{0} \lambda I l}{2 \pi} \ln \left(\frac{b}{a}\right) \hat{z}
\end{aligned}
$$

But it's not moving. Well, $\overrightarrow{\mathbf{P}_{\mathrm{em}}}$ carried by current.
$\underline{\text { Relativity and Fun }}$

$$
x^{\mu}=\left(\begin{array}{c}
x^{0} \\
x^{1} \\
x^{2} \\
x^{3}
\end{array}\right)=\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right)
$$

$$
\begin{gathered}
p^{\mu}=\left(\begin{array}{c}
\frac{E}{c} \\
p_{x} \\
p_{y} \\
p_{z}
\end{array}\right) \\
\vec{F}=\frac{d \vec{p}}{d t} \quad \text { in local time }
\end{gathered}
$$

Minkowski force (τ is proper time)

$$
\begin{gathered}
K^{\mu}=\frac{d p^{\mu}}{d \tau}=\frac{q(\vec{E}+\vec{v} \times \vec{B})}{\sqrt{1+\frac{v^{2}}{c^{2}}}} \\
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & \frac{E_{x}}{c} & \frac{E_{y}}{c} & \frac{E_{z}}{c} \\
-\frac{E_{x}}{c} & 0 & B_{z} & -B_{y} \\
-\frac{E_{y}}{c} & -B_{z} & 0 & B_{x} \\
-\frac{E_{z}}{c} & B_{y} & -B_{x} & 0
\end{array}\right) \\
{\left[\begin{array}{cc}
0 & E \\
-E & \epsilon_{\mathrm{ijk}} B
\end{array}\right]} \\
T=\left[\begin{array}{cc}
T_{00} & T_{\mathrm{i} 0} \\
T_{0 \mathrm{j}} & T_{\mathrm{ij}}
\end{array}\right] \\
T^{\mu \nu}=\frac{1}{\mu_{0}}\left[F^{\mu p} F_{p}^{\nu}-\frac{1}{4} g^{\mu \nu} F^{p \sigma} F_{\mathrm{p} \sigma}\right] \\
T^{00}=\frac{1}{\mu_{0}}\left[\frac{E^{2}}{2 C^{2}}+\frac{B^{2}}{2}\right]=\frac{\epsilon_{0}}{2} E^{2}+\frac{1}{2 \epsilon_{0}} B^{2}
\end{gathered}
$$

$$
\begin{gathered}
T^{0 \mathrm{i}}=\frac{S_{i}}{C}=T^{\mathrm{i} 0} \\
T=\left[\begin{array}{cc}
\text { energy } & \text { energy flux } \\
\mid & \text { momentum flux }
\end{array}\right]
\end{gathered}
$$

