8.022 Lecture Notes Class 37-11/22/2006

Complex impedence instead of diff eq!
Use fact that everything in RLC circuit has same frequency as driving frequency(?).

$$
V(t)=\hat{V} e^{i \omega t} \quad I(t)=\hat{I} e^{i \omega t}
$$

Inductor

$$
\begin{aligned}
V & = & L \frac{d I}{d t} \\
\frac{d I}{d t} & = & i \omega I \\
\frac{V}{I} & =i \omega L=\chi_{L} & (\text { complex impedence of inductor })
\end{aligned}
$$

Capacitor

$$
\begin{aligned}
\frac{d V}{d t}=\frac{d}{d t} \frac{Q}{C} & =\frac{I}{C} \\
i \omega V & =\frac{I}{C}
\end{aligned}
$$

complex impedence of capacitor

$$
\frac{V}{I}=\frac{1}{i \omega C}=\chi_{c}
$$

Resistor

$$
\begin{gathered}
\frac{V}{I}=R \\
V=I \cdot z
\end{gathered}
$$

$$
\begin{aligned}
\chi_{L} & =i \omega L \\
\chi_{C} & =\frac{1}{i \omega C} \\
\chi_{R} & =R
\end{aligned}
$$

RLC Circuit

No derivatives any more! Can sum just like resistors in series.

$$
\begin{aligned}
\chi_{t o t a l}= & \chi_{R}+\chi_{C}+\chi_{L}=R+i \omega L+\frac{1}{i \omega C} \\
I & =\quad \frac{V}{\chi_{\text {total }}} \\
& =\frac{V}{R+i\left(\omega L-\frac{1}{\omega C}\right)} \cdot \frac{R-i\left(\omega L-\frac{1}{\omega C}\right)}{R-i\left(\omega L-\frac{1}{\omega C}\right)} \\
& =\quad \frac{V\left(R-i\left[\omega L-\frac{1}{\omega C}\right]\right)}{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\hat{I} & =\frac{V}{\left[R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}\right]^{1 / 2}} \\
\tan \phi & =\frac{\omega L-\frac{1}{\omega C}}{R}
\end{aligned}
$$

Parallel RLC Circuit

Let $Y=\frac{1}{\chi}, I=V \cdot Y$
admittance current

$$
\begin{aligned}
Y_{L} & =\frac{1}{i \omega L} \\
Y_{C} & =i \omega C \\
Y_{R} & =\frac{1}{R}
\end{aligned}
$$

$$
I=V\left(\frac{1}{R}+i\left(\omega C-\frac{1}{\omega L}\right)\right)
$$

$$
\begin{aligned}
\hat{I} & =V\left(\frac{1}{R^{2}}+\left(\omega C+\frac{1}{\omega L}\right)^{2}\right)^{1 / 2} \\
\tan \phi & =\quad R \omega C-\frac{R}{\omega L}
\end{aligned}
$$

Large $\omega: \frac{1}{L}, V \omega C$ is important.
Small ω : no $C, \frac{V}{\omega L}$ important.

Can we do equivalent of Thevenin's?

$\frac{V}{I}=\chi_{\text {effective }}$

$$
z_{e f f}=R_{e f f}+i \chi e f f
$$

First term decays, second term oscillates.

Power Dissipation
R does this! (LC circuit just oscillates, even w/o driver no loss of power).

$$
\frac{d V}{d t}=R I^{2} \quad(=V I)
$$

$$
\begin{gathered}
z=R=i \chi \\
z=\quad i \chi \\
V=\quad i \chi I \\
\hat{V} e^{i \omega t}=\chi \hat{I} e^{i \omega t+\frac{\pi}{2}} \\
<P>_{a v g}=\quad \begin{aligned}
& \frac{1}{T} \int_{0}^{T} V \cdot I d t \\
&= \int_{0}^{T} \hat{I}^{2} R \cos ^{2}(\omega t) d t-\frac{1}{T} \int_{0}^{T} \chi \hat{I}^{2} \cdot \cos \omega t \sin \omega t d t \\
&=
\end{aligned} \quad \frac{\hat{I}^{2} R}{2}
\end{gathered}
$$

Ladder Impedence

Solve:

$$
z=\frac{z_{1}}{z}+\sqrt{\frac{z_{1}^{2}}{4}+z_{1} z_{2}}
$$

Let:

$$
\begin{aligned}
& z_{1}=i \omega L \\
& z_{2}=\frac{1}{i \omega C}
\end{aligned}
$$

$$
\begin{gathered}
z=\frac{i \omega L}{2}+\sqrt{\frac{-\omega^{2} L^{2}}{4}+\frac{L}{C}} \\
v<0 \quad \text { for } \frac{\omega^{2} L^{2}}{4}>\frac{L}{C} \\
\omega^{2}>\frac{4}{L C}
\end{gathered}
$$

- for $\omega^{2}<\frac{4}{L C}$, there's a real part $=$ resistance! But from only $L=C$? It's because its infinite! Energy keeps traveling out for certain ω !

Critical Frequency - if you are under, energy will just keep going oout. Otherwise, will go out and come back.

