

If we want to find out rate capacitor will charge at when switch is closed, use Thevenin's to simplify left side.

Short Circuit

$$
Q(t)=C V_{o c}\left(1-e^{-\frac{t}{R_{T h} C}}\right)
$$

$$
I_{S C}=\frac{V}{R_{1}} \quad \text { (Thevenin's Current) }
$$

$$
\left.V_{o c}=V(a)-V(b)=V_{R_{2}}=I R_{2}=\frac{V}{R_{1}+R_{2}} R_{2} \quad \text { (Thevenin's Voltage }\right)
$$

$$
R_{T h}=\frac{V_{o c}}{I_{S C}}=\frac{V}{R_{1}+R_{2}} \cdot \frac{R_{2} R_{1}}{V}=\frac{R_{2} R_{1}}{R_{1}+R_{2}}
$$

$$
\begin{aligned}
Q(t) & =C \cdot V_{\alpha}\left(1-e\left(-\frac{t}{R_{T h} C}\right)\right) \\
& =C \cdot \frac{V R_{2}}{R_{1}+R_{2}}\left(1-e^{\left.\left(-\frac{t}{\frac{R_{1} R_{2} C}{R_{1}+R_{2}}}\right)\right)}\right.
\end{aligned}
$$

σ is the conductivity, ρ is the resistivity, and \vec{J} volume current density .

$$
\vec{J}=\sigma \cdot \vec{F}
$$

This says : applied force is proportional to velocity

$$
\sigma=\frac{1}{\rho}
$$

mean free path is λ

$$
t=\sqrt{\frac{2 \lambda}{a}} \quad, \quad v_{a v g}=\frac{1}{2} a t=\frac{1}{2} a \sqrt{\frac{2 \lambda}{a}}=\sqrt{\frac{a \lambda}{2}}
$$

$$
\begin{aligned}
v_{a v g} & =\quad \frac{1}{2} a t=\frac{1}{2} \frac{a \lambda}{v_{T}} \propto a \\
\vec{J} & =n_{q} v_{a v g}=n_{q} \cdot \frac{a \lambda}{2 v_{T}} \\
& =\frac{n q \lambda}{2 v_{T}} \cdot \frac{\vec{F}}{m}=\left(\frac{n q \lambda}{2 m v_{T}}\right) \vec{F}
\end{aligned}
$$

$$
\vec{J}=\sigma(\vec{E}+\vec{v} \times \vec{B})
$$

In CGS, $\vec{F} \propto\left(\vec{E}+\frac{\vec{v}}{c} \times \vec{B}\right)$

$$
\vec{J} \simeq \sigma \vec{E} \quad \text { Microscopic Ohm's Law }
$$

$$
\begin{gathered}
\vec{E}=\frac{\vec{J}}{\sigma}=\rho \vec{J} \\
\int \vec{E} \cdot d \vec{l}=\int \rho \vec{J} d \vec{l}\left\{\begin{array}{l}
R=\int d l \cdot \frac{\rho}{A} \\
I=\int d \vec{l} \cdot \vec{J} \\
\iint d a d l \frac{\rho \vec{J}}{A} \\
\int d l \rho \vec{J}
\end{array}\right. \\
V=I R
\end{gathered}
$$

Faraday's Law

Pulling loop out of \vec{B} creates velocity and \therefore current, so resistor heats up.

Moving magnet also gets current.

decrease N - works too

$$
\varepsilon=-\frac{d \Phi_{0}}{d t} \quad \underline{\text { Lenz's Law (negative sign) }}
$$

