

$$
V=I R \quad \text { Macroscopic Ohm's Law }
$$

$\Sigma \Delta V \quad$ Kirchoff's I

$$
\Longleftrightarrow \oint \vec{E} \cdot d \vec{l}=0
$$

Three loops but only two interesting ones.
Charge is conserved at junctions.

$$
\Sigma I=0 \quad \text { Kirchoff's II }
$$

Resistors in Series

Use $\Sigma V=0$

$$
\begin{gathered}
V_{1}+V_{2}=V \\
R=\frac{V}{I}=\frac{V_{1}+V_{2}}{I}=\frac{V_{1}}{I}+\frac{V_{2}}{I}=R_{1}+R_{2}
\end{gathered}
$$

Resistors in Parallel

Capacitors in Series

$$
C=\frac{Q}{V}=\frac{Q}{V_{1}+V_{2}}=\frac{1}{\frac{V_{1}}{Q}+\frac{V_{2}}{Q}}=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}}
$$

Capacitors in Parallel

$$
C=\frac{Q_{1}+Q_{2}}{V}=\frac{Q_{1}}{V}+\frac{Q_{2}}{V}=C_{1}+C_{2}
$$

Resistor Cube

$$
\begin{array}{rlc}
\frac{1}{R_{\mathrm{eq}}} & = & \frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \\
& =\frac{1}{R+\frac{1}{\frac{1}{2 R}+\frac{1}{2 R}}}+\frac{1}{R+\frac{1}{\frac{1}{2 R}+\frac{1}{2 R}}}+\frac{1}{R+\frac{1}{\frac{1}{2 R}+\frac{1}{2 R}}} \\
& = & \frac{3}{R+R} \\
& = & \frac{3}{2 R} \\
R_{\mathrm{eq}} & = & \frac{2}{3} R
\end{array}
$$

