### 8.022 Lecture Notes Class 22-10/24/2006

$$
\begin{array}{rlrl}
F^{\prime} & =\gamma_{v} \cdot q v \cdot \frac{u \cdot \lambda_{0}}{2 \pi r \epsilon_{0} c^{2}} \quad \mu_{0}=\frac{1}{\epsilon_{0} c^{2}} \\
F^{\prime} & =\gamma_{v} q v \cdot \frac{\mu_{0} u \lambda_{0}}{2 \pi r} \quad \mu_{0} \epsilon_{0}=\frac{1}{c^{2}} \\
F & =q v \cdot \mu_{0} \frac{u \lambda_{0}}{2 \pi r} \quad F^{\prime}=\quad \gamma_{v} F \\
& = & q \cdot v \cdot\left[\frac{\mu_{0} I}{2 \pi r}\right] \\
& = & q \cdot v \cdot B
\end{array}
$$


$\mu \lambda_{0}=I$

$$
\Rightarrow \vec{F}=\quad q \vec{v} \times \vec{B}
$$

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B}) \quad(\text { Lorentz Force Law })
$$

Magnetostatics

- Simplest nontrivial case:

A particle w/ charge $q$ in $\vec{B}=B_{0} \hat{z}$

$$
\vec{B}=q \vec{v} \times \vec{B}=m \vec{a}=\frac{d \vec{p}}{d t}
$$

$F_{z}=0$ since $\vec{B}$ is in $\hat{z}$ direction, so $v_{z}=$ constant particle moves in xy-plane, cross product, implies cosines and sines, circle

- Static field (doesn't change overtime) is not necessarily constant (doesn't change over space )

$$
\frac{m\left|v^{2}\right|}{R}=q|\vec{v}||\vec{B}| \quad|v| \ll c
$$

Frequency: $\omega=\frac{V}{R}=\frac{q B}{m}$ cyclotron frequency (not dependent on $v$ when non-relativistic)


What is useful? In cyclotrons!


Can make particles go fast!
When speeds get relativistic, $\omega$ no longer constant.
Synchotron $\left\{\begin{array}{l}\omega=\omega(v) \\ \beta=\beta(t) \quad \text { (increase B to keep R smaller) }\end{array}\right.$
(Nonlinear particle accelerators all us this - curving particles to accelerate with them - essentially synchotron) CERN - Large Hadron Collider

- Can't do this with uncharged particles(Neutron not found until 1930's, 1940's - very late )

Tommorow's problem: particle with charge $q$ in
$\vec{B}=B_{0} \hat{z}$ and $\vec{E}=E_{0} \hat{y}$


