8.022 Lecture Notes Class 13-09/28/2006

Find work needed to bind together

$$
\begin{array}{rlc}
W & = & q V \\
& = & \frac{1}{2} \Sigma_{i=1}^{4} Q_{i} \cdot V\left(\overrightarrow{r_{i}}\right) \\
& =\frac{1}{2}\left(q \cdot \frac{1}{4 \pi \epsilon_{0}}\left(\frac{q}{a \sqrt{2}}+\frac{-q}{a}+\frac{-q}{a}\right) \cdot 2+2 \cdot-q \cdot \frac{1}{4 \pi \epsilon_{0}}\left(\frac{q}{a}+\frac{-q}{a \sqrt{2}}+\frac{q}{a}\right)\right) \\
& = & \frac{1}{a}\left(\frac{q^{2}}{4 \pi \epsilon_{0} \sqrt{2}}-2 \cdot \frac{q^{2}}{4 \pi \epsilon_{0}}+\frac{q^{2}}{4 \pi \epsilon_{0} \sqrt{2}}-2 \cdot \frac{q^{2}}{4 \pi \epsilon_{0}}\right) \\
& = & \frac{q^{2}}{4 \pi \epsilon_{0} a}\left(\frac{2}{\sqrt{2}}-4\right)=\frac{q^{2}}{4 \pi \epsilon_{0} a}(\sqrt{2}-4)
\end{array}
$$

Do sides, then diagonals

$$
\begin{array}{rlc}
U & = & \frac{\epsilon_{0}}{2\left(4 \pi \epsilon_{0}\right)^{2}} \int\left(\frac{q^{2}}{r^{2}}\right)^{2} r^{2} \sin \theta d \theta d \phi d r \\
& = & \frac{q^{2}}{8 \pi \epsilon_{0}} \int_{0}^{\infty} \frac{1}{r^{2}} d r \\
& = & \left.\frac{q^{2}}{8 \pi \epsilon_{0}} \frac{-1}{r}\right|_{0} ^{\infty} \\
& = & \frac{q^{2}}{8 \pi \epsilon_{0}}\left(-\frac{1}{\infty}-\left(-\frac{1}{0}\right)\right) \\
& = & \infty
\end{array}
$$

Charge Up a Capacitor

$d W=\left(\frac{q}{C}\right) d q \quad$ work gets harder as there is more charge already on it

$$
\begin{array}{rlr}
W & = & \int_{0}^{Q} \frac{q}{C} d q \\
& = & \frac{q^{2}}{2 C} \|_{0}^{Q} \\
& = & \frac{Q^{2}}{2 C} \quad C=\frac{Q}{V} \\
& = & \frac{1}{2} C V^{2}
\end{array}
$$

$$
\left\{\begin{array}{l}
\nabla^{2} V=-\frac{\rho}{\epsilon_{0}} \quad \text { Poisson's } \\
\nabla^{2} V=0 \quad \text { Laplace }
\end{array}\right.
$$

In one dimension: $\frac{d^{2} V}{d x^{2}}=0$, so $V=m x+b$ (line).

First Uniqueness Theorem

Given V on boundary S of volume V, Laplace's equation gives a unique solution for V in $V .(V$ does not need to be finite $)$

$$
\begin{array}{rlrl}
\nabla^{2} V_{1} & = & 0=\nabla^{2} V_{2} \\
V_{3} & = & V_{1}-V_{2} \\
\text { So } \nabla^{2} V_{3} & =0, \text { and } V_{3}=0 \text { on boundary }
\end{array}
$$

Also no local min/max , so $V_{3}=0$ in V .

$$
\text { Thus } V_{1}=V_{2}
$$

Second Uniqueness Theorem

In a volume surrounded by conductors, the total charge on each conductor determines the E-field uniquely.
Will charges spread out?
Yes!
Thus case below

> no charges - (total on each) stable solution

Still no charge on each conductor, so by Second Uniqueness Theorem, same solution as above

