Problem Set 3

1 Readings

See syllabus for reading assignments.

2 Problems

All problems are from Griffiths

1. 2.32
2. 2.33
3. 2.38
4. $2.48 \mathrm{a}-\mathrm{d}$
5. $2.49 \mathrm{a}-\mathrm{c}$
6. 2.51
7. 3.1
8. 3.2
9. 3.9
10. The English Channel tunnel consists of a series of tunnels, each with a set of railroad tracks. As an order of magnitude estimate, calculate the capacitance of an idealized tunnel, cylindrical in shape with a monorail which is also cylindrical and is coaxial to the tunnel. Both the outer and inner cylinders are conducting. The length of tunnel is, the diameter of monorail is, and the diameter of tunnel is $l=5.0 \cdot 10^{1} \mathrm{~km}$, $d=5.0 \cdot 10^{1} \mathrm{~cm}, a=1.0 \times 10^{1} \mathrm{~m}$
(a) Find the capacitance of this idealized tunnel.
(b) Does the capacitance increase, decrease, or stay the same when a train enters the tunnel? Briefly explain your reasoning.
