
� RC circuits 

� 

8.022 (E&M) – Lecture 9 

Topics: 

Thevenin’s theorem  
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Last time 

� Electromotive force: 
� 

� How to solve simple circuits: 
� 

� 

� 
2P VI RI= = 
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How does a battery work and its internal resistance 

Kirchhoff’s first rule: at any node, sum of the currents in = sum 
of the currents out (conservation of charge at nodes) 
Kirchhoff’s second rule: around any closed loops, the sum of 
EMF and potential drops is 0 (electrostatic field is conservative) 

Power dissipated by a resistor: 
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Capacitors in circuits 
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� 0 Æ V0=Q0/C 
� 

� 

RC 
+ 

-

s 

G. Sciolla – MIT 8.022 – Lecture 9 

A new way of looking at problems: 
Until now: charges at rest or constant currents 
When capacitors present: currents vary over time 

Consider the following situation: 
A capacitor C with charge Q
A resistor R in series connected by switch s 

What happens when switch s is closed? 
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Discharging capacitors: qualitative 
� 

� 0 
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� After switch s is closed: 
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Before switch s is closed: 
Difference in potential between C plates: V
No current circulating in the circuit (open) 

Difference in potential between capacitor plates will induce current I 
As I flows, charge difference on capacitor decreases 
decreases over time 
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Discharging capacitors: quantitative 
� law: 

� 

� Æ Q(t) Æ 

� Vol
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Apply second Kirchhoff’s 
EMF supplied by capacitor C: V=Q/C 

NB: this is true at any moment in time V(t) 
tage drop on the resistor: -IR 

Not useful in this form since I=I(Q) 
I=-dQ/dt (- sign because C is losing charge)  

Easy integral yields to exponential decay of the charge:  

Q dQ
dt  
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How to integrate RC circuits 

To solve  rewrite as:  Q dQ  dQ  dt  
dt  RC  

=  −  

Integrate both sides: 

RC  

RC  

=RC is called “decay constant” of the circuit 
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Solution of RC circuit 
� Solution: 

� 

� τ is called “decay constant” it 
� 

� Units of RC: 
� Æ [RC]=s 
� Æ [RC]=s 

� Derive the current: 

� 
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Exponential decay of charge stored in capacitor 
=RC of the circu

After a time RC, the charge decreased by 1/e w.r.t. original value 

cgs: [R]= statvolt s /esu; [C]=esu/statvolt 
SI:  [R]=V/A; [C]=C/V; A=C/s 

Same exponential decay as for Q(t) 

RC  

dt 
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Charging capacitors 
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Now 3 elements in circuit: EMF, capacitor and resistor 
Capacitor starts uncharged 

What happens when switch s is closed? 
When s is closed, current wil  suddenly flow and C will charge 
As C charges, E opposite to EMF builds up and slows down current 
I(t) stops when V
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Charging capacitor: solve the circuit 

� 

� 

� NB: + because the capacitor is now charging! 

� First order differential equation 

� Solution: 
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Solve using Kirchhoff’s second law:  
I(t)=+dQ/dt 

IR  

CV  

Details of integration 
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To solve 0 ,   rewrite as:  

Setting: Q'= 

Integrating between t=0 and t: 

ln 
Q Q  t  t  t  

dQ Q CV 
dt RC 

Q CV  
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Q  t  CV  
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Graphical solution 
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-t/RC 

CV  

Q t  C  V  

dQ t 

Important comments 

� 

� 

� 

� At t=0: I=V/R as if C were a short circuit 
� At t=infinity it 

� 

� 

� 
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Solution of RC circuit: 

Are Kirchhoff’s laws valid at any moment in time? 

Asymptotic behavior of the capacitor: 

, I=0 as if C were an open circu

Conclusion: no need to solve the differential equation! 
Solution is an exponential with time constant RC 
Asymptotic behavior of C gives initial/final values for V(t) and I(t)  

OK! IR  V  

RC  I  t  
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Time constant of RC circuit (E9) 
� Simple RC circuit with 

� VEMF = 3 V 
� C = 1.3 F 
� R = 11.7 Ω 

� 

� What are VC and I? 
� 

RC 
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Questions: 

Verify that time constant is RC 

EMV  

If formula is correct 
=V 1-1/e  when t=15.2 

EMF  

Verify time constant (E8) 
� 

� VEMF = squared 5 V pulses 
� µF 
� 2 Ω 

� R1 = 100 Ω 

� C and I(R1) 
� 
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RC circuit with 

Variable C initially = 0.3 
Variable R initially = 400 

Display on scope V
Verify that time constant is RC 

EMF 

-t/RC 
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Verify time constant (E8) 
� 

� VEMF = squared 5 V pulses 
� µF 
� 2 Ω 

� R1 = 100 Ω 

τ
� What happens when we double C? 

� τ1 τ0 Æ V (IAG

� 

� R’=2R=2(R1+R2’) Æ R2’: 400 Æ 900 Ω 

R1 

CR2 

V

A 

G 
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RC circuit with 

Variable C initially = 0.3 
Variable R initially = 400 

Assuming  =RC… 

=RC’=2RC=2 ) raises (falls) twice as fast 

How should we change R2 to have the same effect? 

EMF 

More complicated RC circuits 

� 

� 

� itor 
� Solution: 

� 

� 
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What if the RC circuit is more than just a series of R and C? 
Consider the following circuit: 

Calculate Q(t) on the capac

Kirckhoff’s laws will solve it: TEDIOUS!  
Use Thevenin’s Theorem  
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OC T where 
� VOC 

� RT=VOC/I short 
or RT=Req wi

� In our case: 
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Thevenin equivalence 

Thevenin’s theorem: 
Any combination of resistors and EMFs with 2 terminals can be replaced with a 

series of a battery V and a resistor R
is the open circuit voltage 

short where I is the current going through the shorted terminals 
th all the EMF shorted 

Once the circuit is reduced, the solution is known:  Q t  CV  

Thevenin’s demonstration 
� OC 

� Æ 

� So VOC i
� Æ Æ OC 

� T=VOC/I with I
� l i i
� Æ short=VOC/RT 

Æ RT=VOC/I
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Prove that V is the open circuit voltage 

Since     
is the asymptot c V for the capacitor 

Since for t infinity, C open circuit: V = V of the open circuit 

Prove that R short short= current through shorted terminals 
There is on y one current go ng through the reduced c rcuit 
At t=0, C behaves like a short At t=0 I

short 

exp( Q t  CV  expOC  V t  V  

9




Solve the actual problem 
Calculate VOC and RT=VOC/I for our problem: 
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short 

t R  R  
CR R 

t R  R  
CR R 

Q t  C  
short  

Thevenin 

This is R1//R2, same resistance we would get if we sh 

Shorting C is makes R  irrelevant in the circuit: I 

orted EMF! 

� 

and V : 

Careful: 
� 

linear relati

VOC≡ +
 

-

RTAny 
unknown 

combination 
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Thoughts on Thevenin 
The importance of Thevenin: 

When we have a messy system or resistors and EMFs, we can reduce it 
to a simple R+EMF in series just measuring Ishort open

Thevenin works only when the elements in the box follow Ohm’s law, 
i.e. on between V and I 

of Rs and EMFs 
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Oscillating circuit (E13) 
C 

� RC circuit with: 
� VEMF = 1 kV 

� C = 0.1 µF R


� R = 2.5 MΩ +
 -

� Fluorescent light in parallel with capacitor
 VEMF 

(RFL<<< R when current flows; ~infinite otherwise) 

� Why is light flashing at ν~ 1Hz? 
� Initially the capacitor will start charging (no current through the lamp) 
� When VC>certain value ~ 1kV Æ current flows through fluorescent light 

discharging the capacitor very quickly


� The process will start again 

� ν~1/τ=1/RC=4 Hz
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Oscillating circuit (E13) 
� 

� VEMF = 1 kV 
� C = 0.1 µF 
� R = 2.5 MΩ 

� Fluorescent light in parallel with capacitor 
(RFL<<< 

� 

� Charging: τcharge=RC 
� Discharge: FL 

� T=R//RFL~RFL 

� τ =RT FLC<< 

R 

V

C 

+ -
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RC circuit with: 

R when current flows; ~infinite otherwise) 

NB: charging and discharging time constants are very different! 
fluorescent light is ~ open circuit: 
fluorescent light has a (very small) resistance R

Thevenin: R

discharge C~R

EMF 
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Norton’s theorem 

parallel of a current generator IN T where 
� RT i

� IN = VOC/RT 
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Any combination of resistors and EMFs with 2 terminals can be replaced with a 
and a resistor R

is the equivalent resistance of the circuit w th all the EMF shorted and all the 
current sources open (same as Thevenin!) 

R R 

Summary and Outlook 

� Today: 
� RC circuits 
� Thevenin’s theorem 

� Next time: 
� Magnetism 

� Remember: don’t miss office hours 
� Bring your problems and let’s find solutions together! 
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