8.022 (E\&M) - Lecture 3

Topics:

- Electric potential
- Energy associated with an electric field
- Gauss's law in differential form
... and a lot of vector calculus... (yes, again!)

Last time...

What did we learn?

- Energy of a system of charges $\quad U=\frac{1}{2} \sum_{i=1}^{i=N} \sum_{\substack{j=1 \\ j \neq i}}^{j=N} \frac{q_{i} q_{j}}{r_{i j}}$
- Electric field $\vec{E}=\frac{\vec{F}_{q}}{q}=\frac{Q}{|r|^{2}} \hat{r}$
- Gauss's law in integral form:

$$
\Phi=\oint_{S} \vec{E} \cdot d \vec{A}=4 \pi Q_{\text {encl }}
$$

- Derived last time, but not rigorously...

Gauss's law

> NB: Gauss's law only because $\mathrm{E} \sim 1 / \mathrm{r}^{2}$. If $\mathrm{E} \sim$ anything else, the r^{2} would not cancel!!!

- Consider charge in a generic surface S
- Surround charge with spherical surface S_{1} concentric to charge
- Consider cone of solid angle $\mathrm{d} \Omega$ from charge to surface S through the little sphere
- Electric flux through little sphere:

$$
d \Phi_{S 1}=\vec{E} \cdot d \vec{A}=\left(\frac{q}{r^{2}} \hat{r}\right)\left(r^{2} d \Omega \hat{r}\right)=q d \Omega
$$

- Electric flux through surface S :

$$
d \Phi_{S}=\vec{E} \cdot d \vec{A}=\left(\frac{q}{R^{2}} \hat{r}\right) \cdot\left(\frac{R^{2} d \Omega}{\cos \theta} \hat{n}\right)=q d \Omega \frac{\hat{r} \bullet \hat{n}}{\cos \theta}=q d \Omega
$$

- $\mathrm{d} \Phi_{\mathrm{S}}=\mathrm{d} \Phi_{\mathrm{S} 1} \rightarrow \Phi_{\mathrm{S}}=\Phi_{\mathrm{S} 1}=4 \pi \mathrm{Q}$

$$
\Phi=\oint_{S} \vec{E} \cdot d \vec{A}=4 \pi Q_{\text {encl }} \text { is valid for ANY shape S. }
$$

Confirmation of Gauss's law

Electric field of spherical shell of charges:

$$
\vec{E}= \begin{cases}\frac{Q}{r^{2}} \hat{r} & \text { outside the shell } \\ 0 & \text { inside the shell }\end{cases}
$$

Can we verify this experimentally?

- Charge a spherical surface with Van de Graaf generator
- Is it charged? (D7 and D8)
- Is Electric Field radial? Does E~1/r², eg: $\phi \sim 1 / r$? Neon tube on only when oriented radially (D24)
- (D29?)

Confirmation of Gauss's law (2)

- Cylindrical shell positively charged
- Gauus tells us that
- $\mathrm{E}_{\text {inside }}=0$
- $\mathrm{E}_{\text {outside }}>0$
- Can we verify this experimentally?

- Demo D26
- Charge 2 conductive spheres by induction outside the cylinder: one sphere will be + and the other will be -: it works because $\mathrm{E}_{\text {outside }}>0$
- Try to do the same inside inside cylinder \rightarrow nothing happens because $\mathrm{E}=0$
(explain induction on the board)

Energy stored in E:
 Squeezing charges...

- Consider a spherical shell of charge of radius r
- How much work dW to "squeeze" it to a radius r - $d r$?
- Guess the pressure necessary to squeeze it:

$$
\begin{aligned}
& P=\frac{F}{A}=\frac{Q E}{A}=E \frac{Q}{A}=E \sigma \\
& E_{\text {outside }}=\frac{Q}{r^{2}} ; E_{\text {inside }}=0 \rightarrow E_{\text {surface }}=\frac{1}{2} \frac{Q}{r^{2}} \\
& \rightarrow P=E \sigma=\frac{1}{2} \frac{Q}{r^{2}} \sigma=\frac{\sigma}{2 r^{2}}\left(4 \pi r^{2} \sigma\right)=2 \pi \sigma^{2}
\end{aligned}
$$

- We can now calculate dW:

$d W=F d r=(P A) d r=\left(2 \pi \sigma^{2}\right)\left(4 \pi r^{2}\right) d r=2 \pi \sigma^{2} d V$
(where $d V=4 \pi r^{2} d r$)
Remembering that $\mathrm{E}_{\text {created in dr }}=4 \pi \sigma \quad \Rightarrow \quad d W=\frac{E^{2}}{8 \pi} d V$
G. Sciolla - MIT

Energy stored in the electric field

- Work done on the system: $d W=\frac{E^{2}}{8 \pi} d V$
- We do work on the system (dW): same sign charges have been squeezed on a smaller surface, closer together and they do not like that...
- Where does the energy go?
- We created electric field where there was none (between r and r-dr)
\rightarrow The electric field we created must be storing the energy
- Energy is conserved $\rightarrow \mathrm{dU}=\mathrm{dW}$
- $u=\frac{E^{2}}{8 \pi}$ is the energy density of the electric field E
- Energy is stored in the E field:

- NB: integrate over entire space not only where charges are!
- Example: charged sphere
G. Sciolla - MIT
8.022 - Lecture 3

Electric potential difference

- Work to move q from r_{1} to r_{2} :
$W_{12}=\int_{1}^{2} \vec{F}_{I} \bullet d \vec{s}=-\int_{1}^{2} \vec{F}_{\text {Coulomb }} \bullet d \vec{s}=-q \int_{1}^{2} \vec{E} \bullet d \vec{s}$
- W_{12} depends on the test charge $\mathrm{q}:($ \rightarrow define a quantity that is independent of q and just describes the properties of the space:

$$
\phi_{12} \equiv \frac{W_{12}}{q}=-\int_{1}^{2} \vec{E} \cdot d \vec{s}
$$

Electric potential difference between P_{1} and P_{2}

- Physical interpretation:
ϕ_{12} is work that I must do to move a unit charge from P_{1} to P_{2}
- Units:
- cgs: statvolts = erg/esu; SI: Volt = N/C; 1 statvolts $=" 3 " 10_{2}$ V

Electric potential

- The electric potential difference ϕ_{12} is defined as the work to move a unit charge between P_{1} and P_{2} : we need 2 points!
- Can we define similar concept describing the properties of the space?
- Yes, just fix one of the points (e.g.: $P_{1}=$ infinity):

$$
\phi(\vec{r})=-\int_{\infty}^{\vec{r}} \vec{E} \cdot d \vec{s} \quad \Leftarrow \quad \text { Potential }
$$

- Application 1: Calculate $\phi(r)$ created by a point charge in the origin:

$$
\phi(\vec{r})=-\int_{\infty}^{\vec{r}} \vec{E} \cdot d \vec{s}=-\int_{\infty}^{r} \frac{q}{r^{2}} d r=\frac{q}{r}
$$

- Application 2: Calculate potential difference between points P_{1} and P_{2} :

$$
\phi_{12}=-\int_{r 1}^{r 2} \vec{E} \cdot d \vec{s}=\frac{q}{r_{2}}-\frac{q}{r_{1}}=\phi\left(P_{2}\right)-\phi\left(P_{1}\right)
$$

\rightarrow Potential difference is really the difference of potentials!

Potentials of standard charge distributions

The potential created by a point charge is $\phi(\vec{r})=\frac{q}{r}$
\rightarrow Given this + superposition we can calculate anything!

- Potential of N point charges: $\quad \phi(\vec{r})=\sum_{i=1}^{N} \frac{q_{i}}{r_{i}}$
- Potential of charges in a volume $\mathrm{V}: \quad \phi(\vec{r})=\int_{V} \frac{\rho d V}{r}$
- Potential of charges on a surface $\mathrm{S}: \quad \phi(\vec{r})=\int_{S} \frac{\sigma d A}{r}$
- Potential of charges on a line L: $\quad \phi(\vec{r})=\int_{L} \frac{\lambda d l}{r}$

Some thoughts on potential

- Why is potential useful? Isn't E good enough?
- Potential is a scalar function \rightarrow much easier to integrate than electric field or force that are vector functions
- When is the potential defined?
- Unless you set your reference somehow, the potential has no meaning
- Usually we choose ϕ (infinity)=0
- This does not work always: e.g.: potential created by a line of charges
- Careful: do not confuse potential $\phi(x, y, z)$ with potential energy of a system of charges (U)
$\begin{aligned} & \text { - Potential energy of a system of charges: } \\ & \text { work done to assemble charge configuration }\end{aligned} \quad U=\frac{1}{2} \sum_{i=1}^{i=N} \sum_{\substack{j=1 \\ j \neq i}}^{j=N} \frac{q_{i} q_{j}}{r_{i j}}$
- Potential: work to move test charge from infinity to $(\mathrm{x}, \mathrm{y}, \mathrm{z}) \quad \phi(\vec{r})=\sum_{i=1}^{N} \frac{q_{i}}{r_{i}}$
G. Sciolla - MIT
8.022 - Lecture 3

Energy of electric field revisited

- Energy stored in a system of charges: $\quad U=\frac{1}{2} \sum_{i=1}^{i=N} \sum_{\substack{j=1 \\ j \neq i}}^{j=N} \frac{q_{i} q_{j}}{r_{i j}}$
- This can be rewritten as follows:

$$
U=\frac{1}{2} \sum_{j \neq i} q_{j} \sum_{i} \frac{q_{i}}{r_{i j}}=\frac{1}{2} \sum_{j \neq i} q_{j} \phi\left(r_{j}\right)
$$

where $\phi\left(r_{j}\right)$ is the potential due to all charges excepted for the q_{j} at the location of $q_{j}\left(r_{j}\right)$

- Taking a continuum limit:

$$
U=\frac{1}{2} \int_{\substack{\text { volume } \\ \text { whitl } \\ \text { charges }}} \rho \phi(r) d V=\int_{\substack{\text { Entire } \\ \text { space }}} \frac{E^{2}}{8 \pi} d V
$$

NB: this works only when ϕ (infinity $)=0$
G. Sciolla - MIT
8.022 - Lecture 3

Connection between ϕ and E

Consider potential difference between a point at r and $\mathrm{r}+\mathrm{dr}$:

$$
d \phi=-\int_{\vec{r}}^{\vec{r}+d \vec{r}} \vec{E} \cdot d \vec{s} \sim-\vec{E}(\vec{r}) \cdot d \vec{r}
$$

The infinitesimal change in potential can be written as:
$d \phi=\frac{\partial \phi}{\partial x} d x+\frac{\partial \phi}{\partial y} d y+\frac{\partial \phi}{\partial z} d z \equiv\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) \cdot(d x, d y, d z) \equiv \nabla \phi \bullet d \vec{r}$

$$
\vec{E}=-\nabla \phi
$$

Useful info because it allows us to find E given ϕ

- Good because ϕ is much easier to calculate than E
G. Sciolla - MIT
8.022 - Lecture 3

13

Getting familiar with gradients...

1d problem:

$$
\nabla f(x) \equiv \frac{\partial f}{\partial x} \hat{x}
$$

- The derivative $\mathrm{df} / \mathrm{dx}$ describes the function's slope
\rightarrow The gradient describes the change of the function and the direction of the change

2d problem:

$$
\nabla f(x, y) \equiv \frac{\partial f}{\partial x} \hat{x}+\frac{\partial f}{\partial y} \hat{y} \equiv\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)
$$

- The interpretation is the same, but in both directions
\rightarrow The gradient points in the direction where the slope is deepest

Visualization of gradients

Given the potential $\phi(x, y)=\sin (x) \sin (y)$, calculate its gradient.
$\nabla \phi(x, y)=\cos (x) \sin (y) \hat{x}+\sin x \cos y \hat{y}$

The gradient always points uphill $\rightarrow \mathrm{E}=-$ grad ϕ points downhill

Visualization of gradients: equipotential surfaces

Same potential $\phi(x, y)=\sin (x) \sin (y)$

NB: since equipotential lines are perpendicular to the gradient
\rightarrow equipotential lines are always perpendicular to E

Divergence in E\&M (1)

Consider flux of E through surface S :

Cut S into 2 surfaces: S_{1} and S_{2} with $S_{\text {new }}$ the little surface in between

$$
\begin{aligned}
& \quad \Phi=\oint_{S} \vec{E} \cdot d \vec{A}=\oint_{S 1-S 1 n e w} \vec{E} \cdot d \vec{A}+\oint_{S 2-\text { S2new }} \vec{E} \cdot d \vec{A} \\
& =\oint_{S 1} \vec{E} \cdot d \vec{A}-\oint_{\text {S1new }} \vec{E} \cdot d \vec{A}+\oint_{S 2} \vec{E} \cdot d \vec{A}-\oint_{\text {S2new }} \vec{E} \cdot d \vec{A} \\
& =\oint_{S 1} \vec{E} \cdot d \vec{A}-\oint_{S 2} \vec{E} \cdot d \vec{A}=\Phi_{1}+\Phi_{2} \\
& \text { G. Sciolla - MIT }
\end{aligned}
$$

Divergence Theorem

- Let's continue splitting into smaller volumes

$$
\Phi=\sum_{i=1}^{i=\operatorname{largeN}} \Phi_{i}=\sum_{i=1}^{i=\operatorname{largeN}} \oint_{S i} \vec{E} \cdot d \vec{A}_{i}=\sum_{i=1}^{i=\operatorname{largeN}} V_{i} \frac{\oint_{S i} \vec{E} \cdot d \vec{A}_{i}}{V_{i}}
$$

- If we define the divergence of E as

$$
\nabla \cdot \vec{E} \equiv \lim _{V \rightarrow 0} \frac{\oint_{S} \vec{E} \cdot d \vec{A}}{V}
$$

$\rightarrow \quad \Phi=\sum_{i=1}^{\text {largeN }} V_{i}(\nabla \cdot \vec{E}) \rightarrow \int_{V} \nabla \cdot \vec{E} d V$
$\rightarrow \int_{S} \vec{E} \cdot d \vec{A}=\int_{V} \nabla \cdot \vec{E} d V \quad \begin{gathered}\text { Divergence Theorem } \\ \text { (Gauss's Theorem) }\end{gathered}$

Gauss's law in differential form

Simple application of the divergence theorem:

$$
\left\{\begin{array}{c}
\oint_{S} \vec{E} \cdot d \vec{A}=\int_{V} \nabla \cdot \vec{E} d V \\
\oint_{S} \vec{E} \cdot d \vec{A}=4 \pi Q=4 \pi \int_{V} \rho d V
\end{array} \rightarrow \int_{V}(\nabla \cdot \vec{E}-4 \pi \rho) d V=0\right.
$$

This is valid for any surface V :

$$
\nabla \cdot \vec{E}=4 \pi \rho
$$

Comments:

- First Maxwell's equations
- Given E, allows to easily extract charge distribution ρ

What's a divergence?

- Consider infinitesimal cube centered at $P=(x, y, z)$
- Flux of F through the cube in z direction:

$$
\Delta \Phi_{z}=\int_{\text {top tbotoom }} \vec{F} \cdot d \vec{A} \sim \Delta x \Delta y\left[F_{z}\left(x, y, z+\frac{\Delta z}{2}\right)-F_{z}\left(x, y, z-\frac{\Delta z}{2}\right)\right.
$$

- Since $\Delta z \rightarrow 0$

$$
\Delta \Phi_{z}=(\Delta x \Delta y \Delta z) \lim _{\Delta z \rightarrow 0} \frac{1}{\Delta z}\left[F_{z}\left(x, y, z+\frac{\Delta z}{2}\right)-F_{z}\left(x, y, z-\frac{\Delta z}{2}\right)\right]=\Delta x \Delta y \Delta z \frac{\partial F_{z}}{\partial z}
$$

- Similarly for Φ_{x} and Φ_{y}

$$
\Delta \Phi_{x}=\Delta x \Delta y \Delta z \frac{\partial F_{x}}{\partial x} \text { and } \quad \Delta \Phi_{y}=\Delta x \Delta y \Delta z \frac{\partial F_{y}}{\partial y}
$$

Divergence in cartesian coordinates

We defined divergence as $\nabla \cdot \vec{F} \equiv \lim _{V \rightarrow 0} \frac{\oint_{S} \vec{F} \cdot d \vec{A}}{V}$
But what does this really mean?

$$
\begin{aligned}
\nabla \cdot \vec{F} & \equiv \lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y \rightarrow 0 \\
\Delta z \rightarrow 0}} \frac{\oint_{S} \vec{F} \cdot d \vec{A}}{V} \\
& =\lim _{\substack{\Delta x \rightarrow 0 \\
\Delta y \rightarrow 0 \\
\Delta z \rightarrow 0}} \frac{\Delta x \Delta y \Delta z\left(\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}\right)}{\Delta x \Delta y \Delta z} \\
& =\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z} \quad \begin{array}{l}
\text { This is the usable expression for the } \\
\text { divergence: easy to calculate! }
\end{array}
\end{aligned}
$$

Application of Gauss's law in differential form

Problem: given the electric field $\mathrm{E}(\mathrm{r})$, calculate the charge distribution that created it

$$
\vec{E}(r)=\frac{4}{3} \pi K r \hat{r} \quad \text { for } r<\mathrm{R} \quad \text { and } \quad \vec{E}(r)=\frac{4 \pi K}{3 r^{2}} R^{3} \hat{r} \quad \text { for } r>R
$$

Hint: what connects E and ρ ? Gauss's law.

$$
\begin{array}{ll}
\oint_{S} \vec{E} \cdot d \vec{A}=4 \pi Q_{\text {encl }} & \text { (integral form) } \\
\hline \nabla \cdot \vec{E}=4 \pi \rho & \text { (differential form) } \\
\hline
\end{array}
$$

In cartesian coordinates:

$$
\begin{aligned}
& \vec{\nabla} \bullet \vec{E} \equiv \frac{\partial E_{x}}{\partial x}+\frac{\partial E_{y}}{\partial y}+\frac{\partial E_{z}}{\partial z}=\ldots=\left\{\begin{array}{c}
4 \pi K \text { when } \mathrm{r}<\mathrm{R} \\
0 \text { when } \mathrm{r}>\mathrm{R}
\end{array}\right. \\
& \text { G. Sciolla - MIT } 8.022-\text { Lecture } 3
\end{aligned}
$$

$$
\rightarrow \text { Sphere of radius }
$$ R with constant charge density K

Next time...

- Laplace and Poisson equations
- Curl and its use in Electrostatics
- Into to conductors (?)

