8.022 (E\&M) - Lecture 14

Topics:

- Electromagnetic Inductance
- Faraday's and Lentz's laws

Last time

- Parallel between Electric and Magnetic Fields
- Toward Maxwell's equations:

$$
\left\{\begin{array}{lll}
\vec{\nabla} \cdot \vec{E}=4 \pi \rho & \Leftrightarrow & \vec{\nabla} \cdot \vec{B}=0 \\
\vec{\nabla} \times \vec{E}=0 & \Leftrightarrow & \vec{\nabla} \times \vec{B}=\frac{4 \pi}{c} \vec{J}
\end{array}\right.
$$

- Vector Potential: $\vec{E}=-\vec{\nabla} \phi \quad \Leftrightarrow \quad \vec{B} \equiv \vec{\nabla} \times \vec{A}$
- Biot-Savart: $\quad \overrightarrow{\mathrm{B}}=\frac{l}{c} \int_{\text {wire }} d \vec{l} \times \frac{\hat{r}}{r^{2}}$

Moving rod in uniform B

- Let's move a conducting rod in a uniform B
- Charges move with velocity v//x axis
- B//y axis

- What happens?

1) Lorentz force: $\quad \vec{F}_{\text {Lorentz }}=q \frac{\vec{v}}{c} \times \vec{B}=q \vec{E}_{1}$
2) Electric field E_{1} causes separation of charges on the wire
3) Separation of charges creates an opposite electric field E_{2} that exactly compensates E_{1} and equilibrium is established:

$$
\vec{E}_{2}=-\frac{\vec{v}}{c} \times \vec{B}
$$

Moving a loop in uniform B

- Now move a rectangular loop of wire in B
- Same velocity
- Same B

- Lorentz force $\rightarrow \mathrm{E}_{1}$
- $\mathrm{E}_{1} \rightarrow$ separation of charges on the wire
- Separation of charges creates opposite electric field $E_{2}=-E_{1}$:

What if B is non uniform?

- Now move the rectangular loop of wire in non uniform B
- Velocity v
- $B=B_{0}$ above --
- $B=0$ below -.-
- What happens?

- Lorentz force $\rightarrow \mathrm{E}_{1}$
- $\mathrm{E}_{1} \rightarrow$ separation of charges on the wire
- Separation of charges creates charges to flow in the loop (no opposing force in the bottom part!)
- This phenomenon is called electromagnetic induction

Comments on induction

Please notice the following:

- End of electrostatics!

$$
\oint_{l o o p} \vec{E} \cdot d \vec{l} \neq 0 \text { or } \nabla \times \vec{E} \neq 0
$$

- The current flowing in top leg of the loop will feel a force F_{B} from B pointing up
- Lentz's law

Induced emf

- Consider a sliding conducting bar on rails closed on a resistor R in a region of constant magnetic field B

- Charge separation in the bar will induce current \rightarrow e.m.f. e.m.f. $=\frac{1}{q} W(-\rightarrow+)=\frac{1}{q} \int_{-}^{+} \vec{F} \cdot d \vec{s}=\frac{1}{c} \int_{-}^{+}(\vec{v} \times \vec{B}) \cdot d \vec{s}=\frac{v B L}{c}$
- Current flowing in the loop: $I=\frac{v B L}{C R}$
G. Sciolla - mit
8.022 - Lecture 14

Faraday's law

- EMF in the loop: e.m.f. $=\frac{v B L}{c}=\frac{B L}{c} \frac{d x}{d t}$
- Magnetic flux in the rectangle is defined as: $\Phi_{B}=B / x$
- Combine the two keeping in mind that given the direction of v, flux decreases with time:

$$
\rightarrow \text { Faraday's law: e.m.f. }=-\frac{1}{c} \frac{\partial \Phi_{B}}{\partial t}
$$

- The minus sign is important: Lentz's law
- It indicates that the direction of the current is such to oppose the changes in flux of B: ~"electromagnetic inertia"

Thoughts on Lentz's law

Lentz's law:
The current generated in wire opposes changes in flux of B

- v is $L \rightarrow R$:
- Flux of B decreases over time \rightarrow e.m.f. is created with direction that compensates this change: counterclockwise
- v is $R \rightarrow L$:
- Flux of B increases over time \rightarrow e.m.f. is created with direction that compensates this change: clockwise

Another way of looking at Lentz

e.m.f. $=-\frac{1}{C} \frac{\partial \Phi_{B}}{\partial t}$

When current flows in magnetic field it feels a force
Lentz's law: the force will be will try to slow down the bar

- If I clockwise:
- It creates a B pointing into the board $\rightarrow \mathbf{I} \times \mathbf{B}$ points to the left
- If I counterclockwise:
- It creates a B pointing out of the board $\rightarrow \mathbf{I} \times \mathbf{B}$ points to the right

NB: the - sign in Lentz's law is what allows conservation of energy

General proof of Faraday's law

- Consider a loop of arbitrary shape moving with velocity v through a static magnetic field B

- At time t, the flux through the loop is: $\Phi_{B}=\int_{S} \vec{B} \cdot d \vec{a}$

$$
\Delta \Phi_{B}=\Phi_{B}(t+\Delta t)-\Phi_{B}(t)=\Phi_{\text {ribbon }}=\int_{\text {ribbon }} \vec{B} \cdot d \vec{a}
$$

- On the ribbon:

$$
d \vec{a}=(\vec{v} \Delta t) \times d \vec{l}
$$

Proof of Faraday's law(2)

- This means that:

$$
\Delta \Phi_{B}=\int_{\text {ribbon }} \vec{B} \cdot d \vec{a}=\int_{\text {ribbon }} \vec{B} \cdot(\vec{v} \Delta t) \times d \vec{l}=\int_{\text {ribbon }} \Delta t \vec{B} \cdot(\vec{v} \times d \vec{l})
$$

- Using the identity $\vec{a} \cdot(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \cdot \vec{c}$ we obtain:

$$
\Delta \Phi_{B}=\int_{\text {loop }} \Delta t \vec{B} \cdot(\vec{V} \times d \vec{l})=\Delta t \int_{\text {loop }} \vec{B} \times \vec{V} \cdot d \vec{l}=-\Delta t / o o p \int_{\text {ribbon }} \vec{V} \times \vec{B} \cdot d \vec{l}
$$

For $\Delta t \rightarrow 0: \quad \frac{\partial \Phi_{B}}{\partial t}=-C \int_{\text {loop }}\left(\frac{\vec{v}}{C} \times \vec{B}\right) \cdot d \vec{l}$
Since $\mathbf{v} / \mathbf{c} \times \mathbf{B}$ is the magnetic force for unit charge
\rightarrow its line integral on the loop is the work necessary to move a unit charge around the wire: e.m.f!

$$
\rightarrow \text { e.m.f. }=-\frac{1}{c} \frac{\partial \Phi_{B}}{\partial t}
$$

Work from B???

- Faraday's law: e.m.f. $=-\frac{1}{C} \frac{\partial \Phi_{B}}{\partial t}$
- This means that $\vec{v} / c \times \vec{B}$ integrated over the loop is the work that we have to do to move a unit charge around the loop
- But last time we proved that B cannot do work
- Are these 2 statements inconsistent???
- No, the work done to move the charges is not done by B
- It's done by whoever is moving the loop in B

Verification of Faradya's law

- Faraday's law: e.m.f. $=-\frac{1}{c} \frac{\partial \Phi_{B}}{\partial t}$
- What does it mean?
- E.m.f. Is produced when the flux of B changes over time
- \rightarrow area of the loop cannot be null!
- Demo H1:

G. Sciolla - MIT
8.022 - Lecture 14
- move loop in B
- current flows in wire
- if we used instead a wire with 0 area: no I

14

"Relativity"

- What if loop is static and B changes?
- Relativity tells me that we should get the same result
- Same problem from another reference frame
- Does this make sense?
- Charges do not move in the other reference frame
- What causes the force? The induced electric field
- Since e.m.f. is the work necessary to move a unit charge around the loop:

$$
e . m . f .=\oint_{C} \vec{E} \cdot d \vec{l}
$$

- Demo H3: magnet bar moving in the loop

Application of Lentz's law

- H5: disk falling in a magnetic field B
- Create B with e electromagnets (solenoid on Fe core)

- What happen if we drop a disk of conductor?
- With and without B
- What if we drop a full disk
- What if we drop a disk with a cut?
G. Sciolla - MIT

Explanation

- Falling Loop:
- B perpendicular to loop is limited in space \rightarrow flux changes during fall \rightarrow induced I
\rightarrow loop will levitate
(Eddie currents)
- Falling Disk

- Will it slow down?
- Falling open ring
- Will it levitate?

More demos on Faraday's law

- H8: current generated by a solenoid
- Where to put the loop of wire to have current?
- Remember: B of solenoid is 0 outside
- Switch I on and off
- H22 Levitating rings

More demos on Faraday's law

- H15a: current generated by a solenoid
- Spinning disk of conductor
- Magnet sitting on top separated by a plastic sheet
- When disk starts spinning, magnet levitates
- Why?

Faraday's law in differential form

- Faraday's law in integral form: e.m.f. $=-\frac{1}{c} \frac{\partial \Phi_{B}}{\partial t}$
- Right term (apply Stokes): e.m.f. $=\oint_{C} \vec{E} \cdot d \vec{l}=\int_{S} \vec{\nabla} \times \vec{E} \cdot d \vec{a}$
- Left term: $-\frac{1}{c} \frac{\partial \Phi_{B}}{\partial t}=-\frac{1}{c} \frac{\partial}{\partial t} \int_{S} \vec{B} \cdot d \vec{a}$

$$
\rightarrow \int_{s}\left(\vec{\nabla} \times \vec{E}+\frac{1}{c} \frac{\partial \vec{B}}{\partial t}\right) \cdot d \vec{a}=0
$$

- Since this is valid for any surface:

$$
\vec{\nabla} \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t}
$$

- curl E is not longer zero: bye bye electrostatics!
- Explicit link between E and B, as in relativity!

Another step toward Maxwell's equations...

- All the equations in differential form that we found so far:

$$
\begin{cases}\vec{\nabla} \cdot \vec{E}=4 \pi \rho & \leftarrow \text { Relates E and charge density (} \rho \text {) - Gauss } \\ \vec{\nabla} \cdot \vec{B}=0 & \leftarrow \text { Magnetic field lines are closed } \\ \vec{\nabla} \times \vec{E}=-\frac{1}{c} \frac{\partial B}{\partial t} & \leftarrow \text { Change in B creates E - Faraday } \\ \vec{\nabla} \times \vec{B}=\frac{4 \pi}{c} \vec{J} & \leftarrow \text { Relates B and its sources (J) - Ampere }\end{cases}
$$

- Another step toward Maxwell's equations: one last missing ingredient... Can you guess what?
- Symmetry will guide you... Hint:
- Or vector calculus... Hint: take the divergence of Faraday's law...

Summary and outlook

- Today:
- Faraday's (and Lentz's) law:
- Integral form: e.m.f. $=-\frac{1}{c} \frac{\partial \Phi_{B}}{\partial t}$
- Differential form: $\vec{\nabla} \times \vec{E}=-\frac{1}{C} \frac{\partial \vec{B}}{\partial t}$
- Next time:
- Mutual and self inductance

