Massachusetts Institute of technology Department of Physics
 8.022 Fall 2004/12/14

Final: Formula sheet

Potential: $\phi(a)-\phi(b)=-\int_{b}^{a} \vec{E} \cdot d \vec{s}$
Energy of E: The energy of an electrostatic configuration $U=\frac{1}{2} \int_{V} \rho \phi d V=\frac{1}{8 \pi} \int E^{2} d V$.
Pressure: A layer of surface charge density σ exerts a pressure $P=2 \pi \sigma^{2}$.
Current density: $\vec{J}=\rho \vec{v}$.
Current: $I=d Q / d t=\int_{S} \vec{J} \cdot d \vec{a}$ (I is the current through surface S).
Continuity: $\vec{\nabla} \cdot \vec{J}=-\frac{\partial \rho}{\partial t}$
Ohm's law: $\vec{J}=\sigma_{c} \vec{E}$ (microscopic form); $V=I R$ (macroscopic form)
Kirchhoff's laws: Sum of the EMFs and voltage drops around a closed loop is zero;
Current into a junction equals current out.
Capacitance: $Q=C V$. Energy stored in capacitor: $U_{C}=\frac{Q^{2}}{2 C}=\frac{1}{2} C V^{2}$
Lorentz force: $\vec{F}=q \vec{E}+q \frac{\vec{v}}{c} \times \vec{B}$
Magnetic force on current: $\vec{F}=\frac{I}{c} d \vec{l} \times \vec{B}$; or $\vec{F} / L=\frac{\vec{I}}{c} \times \vec{B}$
Vector potential: $\vec{B}=\nabla \times \vec{A} ; \quad \vec{A}=\frac{l}{c} \int \frac{d \vec{l}}{r}$
Biot-Savart law: $d \vec{B}=I d \vec{l} \times \hat{r} /\left(c r^{2}\right)$
Maxwell's equations in differential form :

$$
\begin{aligned}
\vec{\nabla} \cdot \vec{E} & =4 \pi \rho \quad(\text { Gauss's law }) \\
\vec{\nabla} \cdot \vec{B} & =0 \\
\vec{\nabla} \times \vec{E} & =-\frac{1}{c} \frac{\partial \vec{B}}{\partial t} \quad \text { (Faraday's law) } \\
\vec{\nabla} \times \vec{B} & =\frac{4 \pi}{c} \vec{J}+\frac{1}{\mathrm{c}} \frac{\partial \vec{E}}{\partial t} \text { (Ampere's law) } \\
& =\frac{4 \pi}{\mathrm{c}}\left(\vec{J}+\vec{J}_{d}\right) \quad \vec{J}_{d}=\frac{1}{4 \pi} \frac{\partial \vec{E}}{\partial t}=\text { displacement current density }
\end{aligned}
$$

Maxwell's equations in integral form

$$
\begin{aligned}
& \int_{S} \vec{E} \cdot d \vec{a}=4 \pi Q \quad \text { (Gauss's law. Q is charge enclosed by surface S) } \\
& \int_{C} \vec{E} \cdot d \vec{s}=-\frac{1}{c} \frac{\partial \phi_{B}}{\partial t}=\text { e.m.f. (Faraday's law. } \phi_{B} \text { is } \vec{B} \text { flux through surface bounded by C.) } \\
& \begin{aligned}
\int_{C} \vec{B} \cdot d \vec{s} & =\frac{4 \pi}{c} I+\frac{1}{c} \frac{\partial \phi_{E}}{\partial t} \text { (Ampere's law. I is current enclosed by contour C; } \\
& =\frac{4 \pi}{C}\left(I+I_{d}\right) \quad I_{d}=\frac{1}{4 \pi} \frac{\partial \phi_{E}}{\partial t}=\text { displax through surface bounded by C) }
\end{aligned}
\end{aligned}
$$

Self inductance: $\varepsilon=-L d I / d t$
Mutual Inductance: $\boldsymbol{\varepsilon}_{1}=-M_{12} d I_{2} / d t ; \boldsymbol{\varepsilon}_{2}=-M_{21} d I_{1} / d t ; M_{12}=M_{21}$
Magnetic energy: $U=\frac{1}{8 \pi} \int B^{2} d V$
Energy stored in an inductor: $U_{L}=\frac{1}{2} L I^{2}$
Impedance: $\tilde{V}=\tilde{I} Z_{\text {tot. }} \quad Z_{R}=R \quad Z_{L}=i \omega L \quad Z_{C}=1 /(i \omega C)$
Complex numbers: Some handy things to remember.

$$
\text { if } \begin{aligned}
e^{i \theta} & =\cos \theta+i \sin \theta \\
z & =a+i b \quad \text { then } \mathrm{z} \text { may be rewritten } \\
z & =|\mathrm{z}| e^{i \theta} \\
\text { where }|\mathrm{z}| & =\sqrt{a^{2}+b^{2}} \\
\tan \theta & =b / a
\end{aligned}
$$

Time dilation: Moving clocks run slow: $\Delta t_{\text {stationary }}=\gamma \Delta t_{\text {moving }}$
Length contraction: Moving rulers are shortened: $L_{\text {stationary }}=L_{\text {moving }} / \gamma$
Transformation of fields: \| denotes parallel to \vec{v}, \perp denotes perpendicular to \vec{v}

$$
\begin{array}{ll}
\vec{E}_{\|}^{\prime}=\vec{E}_{\|} & \vec{E}_{\perp}^{\prime}=\gamma\left(\vec{E}_{\perp}+\frac{\vec{v}}{c} \times \vec{B}_{\perp}\right) \\
\vec{B}_{\|}^{\prime}=\vec{B}_{\|} & \vec{B}_{\perp}^{\prime}=\gamma\left(\vec{B}_{\perp}-\frac{\vec{v}}{c} \times \vec{E}_{\perp}\right)
\end{array}
$$

Plane wave: a plane wave propagating with wave vector \vec{k} is described by

$$
\begin{aligned}
\vec{E} & =\vec{E}_{0} f(\vec{k} \cdot \vec{r}-\omega t) \\
\vec{B} & =\vec{B}_{0} f(\vec{k} \cdot \vec{r}-\omega t) \\
\rightarrow k & =2 \pi / \lambda ; \quad c k=\omega \quad\left|\vec{E}_{0}\right|=\left|\vec{B}_{0}\right| \\
\vec{E} & \times \vec{B} \quad \text { is parallel to } \vec{k} \text {, the propagation direction. }
\end{aligned}
$$

Poynting vector: $\vec{S}=\frac{c}{4 \pi} \vec{E} \times \vec{B}$

Electromagnetic energy flow: the rate at which energy flows through a surface S is given by $P=\int_{S} \vec{S} \cdot d \vec{a}$.

Useful Math

Cartesian.

Gradient: $\nabla t=\frac{\partial t}{\partial x} \hat{\boldsymbol{x}}+\frac{\partial t}{\partial y} \hat{\boldsymbol{y}}+\frac{\partial t}{\partial z} \hat{\mathbf{z}}$
Divergence: $\nabla \cdot \overrightarrow{\mathbf{v}}=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}$
Curl: $\nabla \times \overrightarrow{\boldsymbol{v}}=\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right) \hat{\boldsymbol{x}}+\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right) \hat{\boldsymbol{y}}+\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right) \hat{\mathbf{z}}$
Laplacian: $\nabla^{2} t=\frac{\partial^{2} t}{\partial x^{2}}+\frac{\partial^{2} t}{\partial y^{2}}+\frac{\partial^{2} t}{\partial z^{2}}$

Spherical.

Gradient: $\nabla t=\frac{\partial t}{\partial r} \hat{\boldsymbol{r}}+\frac{1}{r} \frac{\partial t}{\partial \theta} \hat{\boldsymbol{\theta}}+\frac{1}{r \sin \theta} \frac{\partial t}{\partial \phi} \hat{\boldsymbol{\varphi}}$
Divergence: $\nabla \cdot \overrightarrow{\mathbf{v}}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi}$
Curl:
$\nabla \times \overrightarrow{\boldsymbol{v}}=\frac{1}{r \sin \theta}\left[\frac{\partial\left(\sin \theta v_{\phi}\right)}{\partial \theta}-\frac{\partial v_{\theta}}{\partial \phi}\right] \hat{\boldsymbol{r}}+\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial v_{r}}{\partial \phi}-\frac{\partial\left(r v_{\phi}\right)}{\partial r}\right] \hat{\boldsymbol{\theta}}+\frac{1}{r}\left[\frac{\partial\left(r v_{\theta}\right)}{\partial r}-\frac{\partial v_{r}}{\partial \theta}\right] \hat{\boldsymbol{\varphi}}$
Laplacian: $\nabla^{2} t=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial t}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial t}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} t}{\partial \phi^{2}}$

Cylindrical.

Gradient: $\nabla t=\frac{\partial t}{\partial \rho} \hat{\boldsymbol{\rho}}+\frac{1}{\rho} \frac{\partial t}{\partial \phi} \hat{\boldsymbol{\varphi}}+\frac{\partial t}{\partial \mathrm{z}} \hat{\mathbf{z}}$
Divergence: $\nabla \cdot \overrightarrow{\mathbf{v}}=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho v_{\rho}\right)+\frac{1}{\rho} \frac{\partial v_{\phi}}{\partial \phi}+\frac{\partial v_{z}}{\partial z}$

Curl: $\nabla \times \overrightarrow{\mathbf{v}}=\left[\frac{1}{\rho} \frac{\partial v_{z}}{\partial \phi}-\frac{\partial v_{\phi}}{\partial z}\right] \hat{\boldsymbol{p}}+\left[\frac{\partial v_{\rho}}{\partial z}-\frac{\partial v_{z}}{\partial \rho}\right] \hat{\boldsymbol{\varphi}}+\frac{1}{\rho}\left[\frac{\partial\left(\rho v_{\phi}\right)}{\partial \rho}-\frac{\partial v_{\rho}}{\partial \theta}\right] \hat{\mathbf{z}}$
Laplacian: $\nabla^{2} t=\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial t}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2} t}{\partial \phi^{2}}+\frac{\partial^{2} t}{\partial z^{2}}$

Binomial expansion:

$(1 \pm x)^{n}=1 \pm \frac{n x}{1!}+\frac{n(n-1) x^{2}}{2!} \pm \cdots\left(x^{2}<1\right) ;(1 \pm x)^{-n}=1 \mp \frac{n x}{1!}+\frac{n(n+1) x^{2}}{2!} \mp \cdots\left(x^{2}<1\right)$
Gradient theorem: $\int_{\vec{a}}^{\vec{b}} \operatorname{grad} f \cdot d \vec{s}=f(\vec{b})-f(\vec{a})$
Stokes' theorem: $\oint_{C} \vec{F} \cdot d \vec{l}=\int_{S}(\vec{\nabla} \times \vec{F}) \cdot d \vec{a}$
Gauss' theorem: $\oint_{S} \vec{F} \cdot d \vec{A}=\int_{V}(\nabla \cdot \vec{F}) d V$

