Massachusetts Institute of Technology
 Department of Physics
 8.022 Fall 2004
 Assignment 1: Electric forces and electric fields
 Due date: Friday, September 17th

1. Purcell 1.4: Charges on corners of a square
2. Purcell 1.9: Potential energy of a sphere of charge
3. Purcell 1.16: Sphere of charge with a spherical hollow
4. Purcell 1.17: Flux and cube
5. Purcell 1.26: Electric field from continuous charge distribution (hairpin)
6. Electric Dipole: a pair of charges lies in the $x-y$ plane. The charge +q is at coordinate $x=d, y=0$; the charge -q is at coordinate $x=-d, y=0$.

(a) Evaluate the electric field (magnitude and direction) at point ($0, a$). Show that for $a \gg d,|\vec{E}| \propto 1 / a^{3}$. What is the direction in this limit? (suppose $a>0$)
(b) Evaluate the electric field at the point ($a, 0$). Find also the magnitude and direction for $a \gg d$ (suppose $a>0$)
(c) How much work does it need to move a particle with charge q ' from $(a, 0)$ to (0 , a). (Do not assume $a \gg d$)

7 Coulomb force between line charges: a rod of length 11 with line charge density λ_{1} and a rod of length l_{2} with line charge density λ_{2} lie on the x axis. Their ends are separated by a distance D as shown in the figure.

(a) What is the force \vec{F} between these charges?
(b) Show that for $D \gg l_{1}$ and $D \gg l_{2}$, this force reduces to the Coulomb forces between a pair of point charges, $q_{1}=l_{1} \lambda_{1}, q_{2}=l_{2} \lambda_{2}$.

