Massachusetts Institute of Technology

Physics Department
Physics 8.01x
Fall term 2002

Solutions to Problem Set\#7

The solution is given for $g=10.0 \mathrm{~m} / \mathrm{s}^{2}$. Of course you can use $9.8 \mathrm{~m} / \mathrm{s}^{2}$ and get the same credit.

Problem 1) Y\&F 6-50, p189

a) Since the force $F=M g$ with total body mass M, the work done in doing a chin-up is

$$
W=F \Delta h=M \mathrm{~kg} \times 10 \mathrm{~m} / \mathrm{s}^{2} \times 0.40 \mathrm{~m}
$$

and work per kilogram is

$$
W / M=4.0 \mathrm{~J} / \mathrm{kg}
$$

b) Let the mass of the muscles involved in doing a chin-up be m. From (a) we find an equation for the total work done in doing a chin-up

$$
W=M \times 4.0 \mathrm{~J} / \mathrm{kg}=m \times 70 \mathrm{~J} / \mathrm{kg} \Longrightarrow m / M=4.0 / 70=5.7 \%
$$

c) Now that the work per body mass is $W / M=10 \mathrm{~m} / \mathrm{s}^{2} \times \frac{1}{2} \times 0.40 \mathrm{~m}=2.0 \mathrm{~J} / \mathrm{kg}$, the ratio of mass of "used" muscle to total body mass is

$$
m / M=2.0 / 70=2.9 \%
$$

d) Because children and adults have about the same percentage of muscle in their bodies, the problem depends on what percentage is needed in doing a chin-up. According to previous calculation a child needs a smaller percentage(2.9% in this problem) than an adult (5.7%). Thus children have advantage in doing chin-ups.

Problem 2) Y\&F 6-54, p189

a) Following the usual procesure of decomposing the gravitational force into parallel ($m g \sin \theta$) and perpendicular $(m g \cos \theta)$ components relative to the direction of the inclined plane, the normal force between package and the ramp is balanced by, and therefore equal to in magnitude, $m g \cos \theta$. So friction $f=N \mu_{k}=m g \cos \theta \mu_{k}=15.2 \mathrm{~N}$. We find that the direction of frictional force is opposite to the direction of the package's velocity, which means the angle between them is 180°. The work done by friction is

$$
W_{f}=f \times 1.50 \mathrm{~m} \cos 180^{\circ}=-15.2 \mathrm{~N} \times 1.50 \mathrm{~m}=-22.8 \mathrm{~J}
$$

b) The package's height decreased by $1.50 \mathrm{~m} \times \sin 12^{\circ}=0.31 \mathrm{~m}$. Work done by gravity is

$$
W_{g}=0.31 \mathrm{~m} \times m g=15.6 \mathrm{~N}
$$

c) Because it is perpendicular to the ramp at any instant, the normal force does no work on the package:

$$
W_{N}=N \times 1.5 m \times \cos 90^{\circ}=0
$$

d) Total work $W_{t o t}=W_{f}+W_{g}+W_{n}=-7.2 N$. The work-kinetic energy theorem states that it is equal to change in the package's kinetic energy.

$$
W_{t o t}=\Delta K=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} \Longrightarrow v_{f}=1.4 \mathrm{~m} / \mathrm{s}
$$

Problem 3 Y\&F 6-60, p190

It is convenient to calculate the potential energy function first. Without loss of generality the zero point of potential is at infinity $V(\infty)=0$.

$$
V(x)=-\int_{\infty}^{x} \frac{\alpha}{x^{2}} d x=\frac{\alpha}{x}
$$

In this problem total energy is conserved but the form of energy can be transformed between kinetic and potential energies.
a) By conservation of energy

$$
\begin{aligned}
E_{t o t}(x=5.00 m) & =E_{t o t}\left(x=8.00 \times 10^{-10} m\right) \Longrightarrow \frac{1}{2} m v_{0}^{2}+\frac{\alpha}{5.00 m}=\frac{1}{2} m v_{1}^{2}+\frac{\alpha}{8.00 \times 10^{-10} m} \\
v_{1} & =\sqrt{v_{0}^{2}+\left(\frac{\alpha}{5.00 \mathrm{~m}}-\frac{\alpha}{8.00 \times 10^{-10} \mathrm{~m}}\right) /\left(\frac{m}{2}\right)}=2.41 \times 10^{5} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b) At the closet position $x_{\text {min }}$ the proton has all of its kinetic energy transformed into potential energy ($K=\frac{1}{2} m 0^{2}=0, V(x)$ maximized.

$$
E_{t o t}\left(x=x_{\min }\right)=\frac{\alpha}{x_{\min }}=E_{t o t}(x=5.00 \mathrm{~m}) \Longrightarrow x_{\min }=2.82 \times 10^{-10} \mathrm{~m}
$$

b) When the distance between proton and nucleus restored, there is no total work done on the proton so its speed is the same as itis moving toward the nucleus, $3.00 \times 10^{-10} \mathrm{~m} / \mathrm{s}$

Problem 4 Y\&F 6-71, p191
The only difference from problem 3 is that now the potential function is the well-known

$$
V(x)=\frac{1}{2} k x^{2} .
$$

a) At maximum compression the kinetic energy vanishes, so all energy goes into potential form.

$$
E_{t o t}\left(x_{f}\right)=\frac{1}{2} x_{f}^{2}=\frac{1}{2} m v_{0}^{2} \Longrightarrow x_{f}=0.6 \mathrm{~m}
$$

b) Again we need to solve the equation $E_{t o t}\left(x_{f}\right)=\frac{1}{2} x_{f}^{2}=\frac{1}{2} m v_{0}^{2}$, for v_{0} this time, not for the given $x_{f}=0.15 \mathrm{~m}$. The solution for v_{0} is

$$
v_{0}=1.50 \mathrm{~m} / \mathrm{s} .
$$

