
  

   
 

         
      

    
           

              
       

 

 
 

  
 

      
       

 
   

 

 
 

  
 

  
 

Example 8.9 Pulleys and Ropes Constraint Conditions 

Consider the arrangement of pulleys and blocks shown in Figure 8.39. The pulleys are 
assumed massless and frictionless and the connecting strings are massless and 
inextensible. Denote the respective masses of the blocks as m1 , m2 and m3 . The upper 
pulley in the figure is free to rotate but its center of mass does not move. Both pulleys 
have the same radius R . (a) How are the accelerations of the objects related? (b) Draw 
force diagrams on each moving object. (c) Solve for the accelerations of the objects and 
the tensions in the ropes. 

2 
3 

P1 

Figure 8.39 Constrained pulley system 

Solution: (a) Choose an origin at the center of the upper pulley. Introduce coordinate 
functions for the three moving blocks, y1 , y2 and y3 . Introduce a coordinate function 
yP for the moving pulley (the pulley on the lower right in Figure 8.40). Choose 
downward for positive direction; the coordinate system is shown in the figure below then. 

string A 

y1 yP y3 y2 

1 

2 
3 

P. ĵ 

string B 

Figure 8.40 Coordinated system for pulley system 

The length of string A is given by 
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l = y + y + π R (8.6.46)A 1 P 

where π R is the arc length of the rope that is in contact with the pulley. This length is 
constant, and so the second derivative with respect to time is zero, 

2 2 2d l d y d y A 1 P0 = 2 = 2 + 2 = ay ,1 + a , . (8.6.47)
dt dt dt y P 

Thus block 1 and the moving pulley’s components of acceleration are equal in magnitude 
but opposite in sign, 

ay P = −a . (8.6.48), y ,1 

The length of string B is given by 

lB = ( y3 − yP ) + ( y2 − yP ) + π R = y3 + y2 − 2yP + π R (8.6.49) 

where π R is the arc length of the rope that is in contact with the pulley. This length is 
also constant so the second derivative with respect to time is zero, 

2 2 2 2d l d y d y d y B 2 3 P0 = = + − 2 = a + a − 2a . (8.6.50)2 2 2 2 y ,2 y ,3 y P ,dt dt dt dt 

We can substitute Equation (8.6.48) for the pulley acceleration into Equation (8.6.50) 
yielding the constraint relation between the components of the acceleration of the three 
blocks, 

0 = ay ,2 + ay ,3 + 2ay ,1 . (8.6.51) 

b) Free-body Force diagrams: the forces acting on block 1 are: the gravitational force 
! ! 

m1g and the pulling force TA,1 of string A acting on the block 1. Denote the magnitude 

of this force by TA . Because the string is assumed to be massless and the pulley is 
assumed to be massless and frictionless, the tension TA in the string is uniform and equal 
in magnitude to the pulling force of the string on the block. The free-body diagram on 
block 1 is shown in Figure 8.41(a). 

.1 . .2 3 P . 
(a) (b) (c) (d) 

ĵ 
TA,1 

m1g 

TB,2 

m2g 

TB,3 

m3g TB,P TB,P 

TA,P 

Figure 8.41 Free-body force diagram on (a) block 1; (b) block 2; (c) block 3; (d) pulley 
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Newton’s Second Law applied to block 1 is then 

ĵ : m1g − TA = m1 ay ,1 . (8.6.52) 

!The forces on the block 2 are the gravitational force m2g and string B holding the block, 
! 
TB,2 , with magnitude TB . The free-body diagram for the forces acting on block 2 is 
shown in Figure 8.41(b). Newton’s second Law applied to block 2 is 

ĵ : m2 g − TB = m2 ay ,2 . (8.6.53) 

!The forces on the block 3 are the gravitational force m3g and string holding the block, 
! 
TB,3 , with magnitude equal to TB because pulley P has been assumed to be both 
frictionless and massless. The free-body diagram for the forces acting on block 3 is 
shown in Figure 8.41(c). Newton’s second Law applied to block 3 is 

ĵ : m3g − TB = m3 ay ,3 . (8.6.54) 

  
The forces on the moving pulley P are the gravitational force mP g = 0 (the pulley is 

! 
assumed massless); string B pulls down on the pulley on each side with a force, TB,P , ! 
which has magnitude TB . String A holds the pulley up with a force TA,P with the 

magnitude TA equal to the tension in string A . The free-body diagram for the forces 
acting on the moving pulley is shown in Figure 8.41(d). Newton’s second Law applied to 
the pulley is 

ĵ : 2 T −T = m ay P = 0 . (8.6.55)B A P , 

Because the pulley is assumed to be massless, we can use this last equation to determine 
the condition that the tension in the two strings must satisfy, 

2TB = TA (8.6.56) 

We are now in position to determine the accelerations of the blocks and the tension in the 
two strings. We record the relevant equations as a summary. 

0 = ay ,2 + ay ,3 + 2ay ,1 (8.6.57) 
m g −T = m a (8.6.58)1 A 1 y ,1 

m g −T = m a (8.6.59)2 B 2 y ,2 

m g −T = m a (8.6.60)3 B 3 y ,3 

2TB = TA . (8.6.61) 
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There are five equations with five unknowns, so we can solve this system. We shall first 
use Equation (8.6.61) to eliminate the tension TA in Equation (8.6.58), yielding 

m g − T = m a . (8.6.62)1 2 B 1 y ,1 

We now solve Equations (8.6.59), (8.6.60) and (8.6.62) for the accelerations, 

TBay ,2 = g − (8.6.63)
m2 

ay ,3 = g − 
TB (8.6.64)
m3 

2TBay ,1 = g − . (8.6.65)
m1 

We now substitute these results for the accelerations into the constraint equation, 
Equation (8.6.57), 

T T 4T ⎛ 1 1 4 ⎞B B B0 = g − + g − + 2g − = 4g −TB ⎜ + + ⎟ . (8.6.66)
m m m m m m2 3 1 ⎝ 2 3 1 ⎠ 

We can now solve this last equation for the tension in string B , 

g m m m 4g 4 1 2 3TB = = . (8.6.67)
⎛ 1 1 4 ⎞ m m + m m + 4m m 1 3 1 2 2 3+ +⎜ ⎟ m m m⎝ 2 3 1 ⎠ 

From Equation (8.6.61), the tension in string A is 

8g m m m 1 2 3TA = 2TB = . (8.6.68)
m m + m m + 4m m 1 3 1 2 2 3 

We find the acceleration of block 1 from Equation (8.6.65), using Equation (8.6.67) for 
the tension in string B, 

2T 8g m m m m + m m − 4m m B 2 3 1 3 1 2 2 3ay ,1 = g − = g − = g . (8.6.69)
m m m + m m + 4m m m m + m m + 4m m 1 1 3 1 2 2 3 1 3 1 2 2 3 

We find the acceleration of block 2 from Equation (8.6.63), using Equation (8.6.67) for 
the tension in string B, 

8-4 



  

   

 
    

  
 

   

 
 

 

 
  

   
 

 
 

  
 

            
         

       
       

       
      

   
 

 

           
 

T 4g m m −3m m + m m + 4m m B 1 3 1 3 1 2 2 3ay ,2 = g − = g − = g . (8.6.70)
m m m m m + m m + 4m m 32 1 3 + 1 2 4m m 2 3 1 3 + m m 1 2 2 

Similarly, we find the acceleration of block 3 from Equation (8.6.64), using Equation 
(8.6.67) for the tension in string B, 

T 4 g m m m m − 3m m + 4m m 1 3 1 2 2 3B 1 2ay ,3 = g − = g − = g . (8.6.71)
m m m + m m + 4m m m m + m m + 4m m 3 1 3 1 2 2 3 1 3 1 2 2 3 

As a check on our algebra we note that 

2a + a + a = 1, y 2, y 3, y 

m m + m m − 4m m −3m m + m m + 4m m m m − 3m m + 4m m 1 3 1 2 2 3 1 3 1 2 2 3 1 3 1 2 2 32g + g + g
m m + m m + 4m m m m + m m + 4m m m m + m m + 4m m 1 3 1 2 2 3 1 3 1 2 2 3 1 3 1 2 2 3 

= 0. 

Example 8.10 Accelerating Wedge 

wedge block of mass m 

A 

Figure 8.42 Block on accelerating wedge 
! 

A 45o wedge is pushed along a table with constant acceleration A according to an 
observer at rest with respect to the table. A block of mass m slides without friction down 
the wedge (Figure 8.42). Find its acceleration with respect to an observer at rest with 
respect to the table. Write down a plan for finding the magnitude of the acceleration of 
the block. Make sure you clearly state which concepts you plan to use to calculate any 
relevant physical quantities. Also clearly state any assumptions you make. Be sure you 
include any free-body force diagrams or sketches that you plan to use. 

Solution: Choose a coordinate system for the block and wedge as shown in Figure 8.43.  
Then A = A î where A is the x-component of the acceleration of the wedge. x ,w x ,w 
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