
 

   
 

 
 

  

Example 8.3 Tension in a Massive Rope 
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Figure 8.22a Massive rope pulling a block 
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Consider a block of mass m1 that is lying on a horizontal surface. The coefficient of 
kinetic friction between the block and the surface is µk . A uniform rope of mass m2 and 
length d is attached to the block. The rope is pulled from the side opposite the block 

! 
with an applied force of magnitude = FA,2 . Because the rope is now massive, the FA,2 

pulling force makes an angle φ with respect to the horizontal in order to balance the 
gravitational force on the rope, (Figure 8.22a). Determine the tension in the rope as a 
function of distance x from the block. 

Solution: In the following analysis, we shall assume that the angle φ is very small and 
depict the pulling and tension forces as essentially acting in the horizontal direction even 
though there must be some small vertical component to balance the gravitational forces. 

The key point to realize is that the rope is now massive and we must take in to account 
the inertia of the rope when applying Newton’s Second Law. Consider an imaginary slice 
through the rope at a distance x from the block (Figure 8.22b), dividing the rope into two 
sections. The right section has length d − x and mass mR = (m2 / d)(d − x) . The left 
section has length x and mass mL = (m2 / d)(x) . 
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Figure 8.22b Imaginary slice through the rope 



 

          
               

    
            

 

 
 

    

 
    

The free body force diagrams for the two sections of the rope are shown in Figure 8.22c, 
where T (x) is the tension in the rope at a distance x from the block, and 

F1,L = 
! 
F1,L ≡ 

! 
F1,2 is the magnitude of the force on the left-section of the rope due to the 

rope-block interaction. 
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Figure 8.22c Force diagram for the left and right sections of rope 

Apply Newton’s Second Law to the right section of the rope yielding 
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FA,R − T (x) = mR aR = 
m
d 

2 (d − x)aR , (8.5.7) 

where aR is the x -component of the acceleration of the right section of the rope. Apply 
Newton’s Second Law to the left slice of the rope yielding 

= (m2 / d)x aL , (8.5.8)T (x) − F1,L = mLaL 

where aL is the x -component of the acceleration of the left piece of the rope.  

N 
ĵ îFL,1 1.

fk 
m1g 

Figure 8.23 Force diagram on sliding block 



 

          
             

        

    
 
     
 

     
  

     
 

 
     

 
     
 

  
 

 
 

 
 

The force diagram on the block is shown in Figure 8.23. Newton’s Second Law on the 
block in the + î -direction is FL,1 − fk = m1a1 and in the + ĵ -direction is N − m1g = 0 . The 

kinetic friction force acting on the block is fk = µk N = µkm1g . Newton’s Second Law on 

the block in the + î -direction becomes 

− µkm1g = m1a1 , (8.5.9)FL,1 

Newton’s Third Law for the block-rope interaction is given by FL,1 = F1,L . Eq. (8.5.8) 
then becomes 

T (x) − (µkm1g + m1a1) = (m2 / d)xaL . (8.5.10) 

Because the rope and block move together, the accelerations are equal which we denote 
by the symbol a ≡ a1 = aL . Then Eq. (8.5.10) becomes 

T (x) = µkm1g + (m1 + (m2 / d)x)a . (8.5.11) 

This result is not unexpected because the tension is accelerating both the block and the 
left section and is opposed by the frictional force. 

Alternatively, the force diagram on the system consisting of the rope and block is shown 
in Figure 8.24. 
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Figure 8.24 Force diagram on block-rope system 

Newton’s Second Law becomes 
FA,R − µk m1g = (m2 + m1)a (8.5.12) 

Solve Eq. (8.5.12) for FA,R and substitute into Eq. (8.5.7), and solve for the tension 
yielding Eq. (8.5.11). 



 

  
 

            
           

           
        

      
 

         
      

 
 

         
      

           
      

     

Example 8.4 Tension in a Suspended Rope 

A uniform rope of mass M and length L is suspended from a ceiling (Figure 8.25). The 
magnitude of the acceleration due to gravity is g . (a) Find the tension in the rope at the 
upper end where the rope is fixed to the ceiling. (b) Find the tension in the rope as a 
function of the distance from the ceiling. (c) Find an equation for the rate of change of the 
tension with respect to distance from the ceiling in terms of M , L , and g . 

g 

L 

rope of 
mass M 

ĵ 

+ y 
Figure 8.25 Rope suspended from ceiling Figure 8.26 Coordinate system for 

suspended rope 

Solution: (a) Begin by choosing a coordinate system with the origin at the ceiling and the 
positive y -direction pointing downward (Figure 8.26). In order to find the tension at the 
upper end of the rope, choose as a system the entire rope. The forces acting on the rope 
are the force at y = 0 holding the rope up, T ( y = 0) , and the gravitational force on the 
entire rope. The free-body force diagram is shown in Figure 8.27. 
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Figure 8.27 Force diagram on rope 



  

   
    

 
           

            
       

              
     

              
 

 
    

 
 

     
      

        
  

Because the acceleration is zero, Newton’s Second Law on the rope is Mg − T ( y = 0) = 0 . 
Therefore the tension at the upper end is T ( y = 0) = Mg . 

(b) Recall that the tension at a point is the magnitude of the action-reaction pair of forces 
acting at that point. Make an imaginary slice in the rope a distance y from the ceiling 
separating the rope into an upper segment 1, and lower segment 2 (Figure 8.28a). Choose 
the upper segment as a system with mass m1 = ( M / L) y . The forces acting on the upper 
segment are the gravitational force, the force T ( y = 0) holding the rope up, and the 
tension T ( y) at the point y , that is pulling the upper segment down. The free-body force 
diagram is shown in Figure 8.28b. 

T ( y = 0) 
(a) (b) 

y y 1 ĵ1 

m1gĵ 
T ( y) 

L y 2 

Figure 8.28 (a) Imaginary slice separates rope into two pieces. (b) Free-body force 
diagram on upper piece of rope 

Apply Newton’s Second Law to the upper segment: m1g + T ( y) − T ( y = 0) = 0 . Therefore 
the tension at a distance y from the ceiling is T ( y) = T ( y = 0) − m1g . Because 
m1 = ( M / L) y is the mass of the segment piece and Mg is the tension at the upper end, 
Newton’s Second Law becomes 
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T ( y) = Mg(1− y / L) (8.5.13) 

As a check, we note that when y = L , the tension T ( y = L) = 0 , which is what we expect 
because there is no force acting at the lower end of the rope. 

(c) Differentiate Eq. (8.5.13) with respect to y yielding 

dT = −( M / L)g . (8.5.14)
dy 



  

  
 

 
  

 
           

        
          

        
              

     
 

 
 

  
 

                 

          
       

   
     
 

The rate that the tension is changing at a constant rate with respect to distance from the 
top of the rope. 

8.5.2 Continuous Systems and Newton’s Second Law as a Differential Equations 

We can determine the tension at a distance y from the ceiling in Example 8.4, by an 
alternative method, a technique that will generalize to many types of “continuous 
systems”. Choose a coordinate system with the origin at the ceiling and the positive y -
direction pointing downward as in Figure 8.25. Consider as the system a small element of 
the rope between the points y and y + Δy . This small element has length Δy , The small 
element has mass Δm = ( M / L)Δy and is shown in Figure 8.29. 

ĵ 

y 
y 
y + y 

y = L 

m 

Figure 8.29 Small mass element of the rope 

The forces acting on the small element are the tension, T ( y) at y directed upward, the 
tension T ( y + Δy) at y + Δy directed downward, and the gravitational force Δmg 
directed downward. The tension T ( y + Δy) is equal to the tension T ( y) plus a small 
difference ΔT , 

T ( y + Δy) = T ( y) + ΔT . (8.5.15) 
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