
  

 
 

 
          

          

Example 8.12 Free Fall with Air Drag 

Consider an object of mass m that is in free fall but experiencing air resistance. The 
magnitude of the drag force is given by Eq. (8.6.1), where ρ is the density of air, A is 
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the cross-sectional area of the object in a plane perpendicular to the motion, and CD is 
the drag coefficient. Assume that the object is released from rest and very quickly attains 
speeds in which Eq. (8.6.1) applies. Determine (i) the terminal velocity, and (ii) the 
velocity of the object as a function of time. 

Solution: Choose positive y -direction downwards with the origin at the initial position 
of the object as shown in Figure 8.48(a). 
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Figure 8.48 (a) Coordinate system for marble; (b) free body force diagram on marble 

There are two forces acting on the object: the gravitational force, and the drag force 
which is given by Eq. (8.6.1). The free body diagram is shown in the Figure 8.48(b). 
Newton’s Second Law is then 

2 dv mg − (1/ 2)CD Aρv = m , (8.6.109)
dt 

Set β = (1/ 2)CD Aρ . Newton’s Second Law can then be written as 

2 dv mg − β v = m . (8.6.110)
dt 

Initially when the object is just released with v = 0 , the air drag is zero and the 
acceleration dv / dt is maximum. As the object increases its velocity, the air drag 
becomes larger and dv / dt decreases until the object reaches terminal velocity and 
dv / dt = 0 . Set dv / dt = 0 in Eq. (8.6.15) and solve for the terminal velocity yielding. 

v∞ 
= 

mg 
β 

= 
2mg 

CD Aρ 
. (8.6.111)
 

Values for the magnitude of the terminal velocity is shown in Table 8.3 for a variety of 
objects with the same drag coefficient CD = 0.5 . 
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Table 8.3 Terminal Velocities for Different Sized Objects with CD = 0.5 

Object Mass m (kg) Area A (m2 ) Terminal Velocity v∞ (m ⋅s−1 ) 
Rain drop 4 ×10−6 3×10−6 6.5 
Hailstone 4 ×10−3 3×10−4 20 
Osprey 20 2.5×10−1 50 
Human Being 7.5 ×101 6 ×10−1 60 

In order to integrate Eq. (8.6.15), we shall apply the technique of separation of variables 
and integration by partial fractions. First rewrite Eq. (8.6.15) as 

−β dv dv ⎛ 1 1 ⎞
dt = = = − + 

⎠⎟ 
dv . (8.6.112)

2m ⎛ 2 − 
mg ⎞ (v2 − v∞ ) ⎝⎜ 2v∞ 

(v + v∞ 
) 2v∞ 

(v − v∞ 
)v

⎝⎜ β ⎠⎟ 

An integral expression of Eq. (8.6.112) is then 

v′=v(t ) v′=v(t ) t′=tdv′ dv′ β− + = − dt′ . (8.6.113)∫ ∫ ∫( ) ( ) m v′=0 2v∞ 
v′ + v∞ v′=0 2v∞ 

v′ − v∞ t′=0 

Integration yields 
v′=v(t ) v′=v(t ) t′=tdv′ dv′ β− + = − dt′∫ ∫ ∫2v∞ 

(v′ + v∞ 
) 2v∞ 

(v′ − v∞ 
) m v′=0 v′=0 t′=0 . (8.6.114)

1 ⎛ ⎛ v(t) + v∞
⎞ ⎛ v∞ − v(t)⎞ ⎞ β 

⎜ − ln 
⎝⎜ ⎠⎟ 

+ ln 
⎝⎜ ⎠⎟ ⎟ 

= − t
2v∞ ⎝ v∞ 

v∞ ⎠ m 

After some algebraic manipulations, Eq. (8.6.114) can be rewritten as 

⎛ v∞ − v(t)⎞ 2v∞βln 
⎠⎟ 
= − t (8.6.115)

⎝⎜ v(t) + v∞ 
m 

Exponentiate Eq. (8.6.115) yields 
⎛ v∞ − v(t)⎞ − 

2v∞β 
t 

⎝⎜ v(t) + v∞ ⎠
⎟ = e m . (8.6.116) 

After some algebraic rearrangement the   y -component of the  velocity as a function of 
time is given by  
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2v∞β⎛ − t ⎞ 
1− e ⎛ v∞β ⎞ 

v(t) = v∞
⎜ 

2v

m 

∞β 
⎟ = v∞ 

tan h t (8.6.117)
⎜ − t ⎟ ⎝⎜ m ⎠⎟ 

. 
m⎝ 1+ e ⎠ 

v∞β β mg βg (1/ 2)CD Aρg
where = .= = 

m m β m m 
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