
 

 
    

 
          

         
           

              
       

            
      

 
 

 
 

  
 

 
 
 
 

 
 
 

 

Example 8.11: Capstan 

A device called a capstan is used aboard ships in order to control a rope that is under 
great tension. The rope is wrapped around a fixed drum of radius R , usually for several 
turns (Figure 8.45 shows about three fourths turn as seen from overhead). The load on the 
rope pulls it with a force TA , and the sailor holds the other end of the rope with a much 
smaller force TB . The coefficient of static friction between the rope and the drum is µs . 

The sailor is holding the rope so that it is just about to slip. Show that TB = TAe− µsθBA , 
where θBA is the angle subtended by the rope on the drum. 

Figure 8.45 Capstan 

Figure 8.46 Small slice of rope 
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Solution: We begin by considering a small slice of rope of arc length R Δθ , shown in the 
Figure 8.46. We choose unit vectors for the force diagram on this section of the rope and 
indicate them on Figure 8.47. The right edge of the slice is at angle θ and the left edge of 
the slice is at θ + Δθ . The angle edge end of the slice makes with the horizontal is Δθ / 2 . 
There are four forces acting on this section of the rope. The forces are the normal force 
between the capstan and the rope pointing outward, a static frictional force and the 
tensions at either end of the slice. The rope is held at the just slipping point, so if the load 
exerts a greater force the rope will slip to the right. Therefore the direction of the static 
frictional force between the capstan and the rope, acting on the rope, points to the left. 
The tension on the right side of the slice is denoted by T (θ) ≡ T , while the tension on the 
left side of the slice is denoted by T (θ + Δθ) ≡ T + ΔT . Does the tension in this slice 
from the right side to the left, increase, remain the same, or decrease? The tension 
decreases because the load on the left side is less than the load on the right side. Note that 
ΔT < 0 . 



 

 
  

 
 

 
      

   
 

      
          

  
 

 
   

  

 
  

 
     

Figure 8.47 Free-body force diagram on small slice of rope 

The vector decomposition of the forces is given by 

î : T cos(Δθ / 2) − fs − (T + ΔT )cos(Δθ / 2) (8.6.89) 

ĵ : −T sin( Δθ / 2) + N − (T + ΔT )sin( Δθ / 2) . (8.6.90) 

For small angles Δθ , cos( Δθ / 2) ≅ 1 and sin( Δθ / 2) ≅ Δ θ / 2 . Using the small angle 
approximations, the vector decomposition of the forces in the x -direction (the + î -
direction) becomes 

T cos(Δθ / 2) − f − (T + ΔT )cos(Δθ / 2)  T − f − (T + ΔT )s s (8.6.91) 
= − f − ΔT . s 

By the static equilibrium condition the sum of the x -components of the forces is zero, 

− f s − ΔT = 0 . (8.6.92) 
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The vector decomposition of the forces in the y -direction (the + ĵ -direction) is 
approximately 

−T sin(Δθ / 2) + N − (T + ΔT )sin(Δθ / 2)  −T Δθ / 2 + N − (T + ΔT )Δθ / 2 
(8.6.93) 

= −T Δθ + N − ΔT Δθ / 2 . 

In the last equation above we can ignore the terms proportional to ΔT Δθ because these 
are the product of two small quantities and hence are much smaller than the terms 
proportional to either ΔT or Δθ . The vector decomposition in the y -direction becomes 

−T Δθ + N . (8.6.94) 



  

 
   
 
     
 

  
 
   
 

           
 

   
 

    
 
   
 

      
 

   
 

 
 

   

 
    

 

   

  

Static equilibrium implies that this sum of the y -components of the forces is zero, 

−T Δθ + N = 0 . (8.6.95) 

We can solve this equation for the magnitude of the normal force 

N = T Δθ . (8.6.96) 

The just slipping condition is that the magnitude of the static friction attains its maximum 
value 

f = ( f ) = µ N . (8.6.97)s s max s 

We can now combine the Equations (8.6.92) and (8.6.97) to yield 

ΔT = −µsN . (8.6.98) 

Now substitute the magnitude of the normal force, Equation (8.6.96), into Equation 
(8.6.98), yielding 

−µsTΔθ −Δ T = 0 . (8.6.99) 

Finally, solve this equation for the ratio of the change in tension to the change in angle, 

ΔT = −µ T . (8.6.100)
Δθ s 

The derivative of tension with respect to the angle θ is defined to be the limit 

dT ΔT≡ lim , (8.6.101)
dθ Δθ→0 Δθ 

and Equation (8.6.100) becomes 
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dT = −µ T . (8.6.102)
dθ s 

This is an example of a first order linear differential equation that shows that the rate of 
change of tension with respect to the angle θ is proportional to the negative of the 
tension at that angle θ . This equation can be solved by integration using the technique of 
separation of variables. We first rewrite Equation (8.6.102) as 

dT = −µs dθ . (8.6.103)
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Integrate both sides, noting that when θ = 0 , the tension is equal to force of the load TA , 
and when angle θ = θ , the tension is equal to the force T the sailor applies to the rope,A B B

T =TB θ =θBAdT 
= − µ dθ . (8.6.104)∫ ∫ sTT =TA θ =0 

The result of the integration is 
⎛ TB 

⎞ 
ln = −µ (8.6.105)s θBA . ⎝⎜ TA ⎠

⎟ 

Note that the exponential of the natural logarithm 

⎛ ⎛ ⎞⎞TB TBexp ln ⎜ ⎟ = , (8.6.106)⎜⎜ ⎟⎟T T⎝ ⎝ A ⎠⎠ A 

so exponentiating both sides of Equation (8.6.105) yields 

TB = e − µs θBA ; (8.6.107)
TA 

the tension decreases exponentially, 

TB = TA e
− µsθBA , (8.6.108) 

Because the tension decreases exponentially, the sailor need only apply a small force to 
prevent the rope from slipping. 

Example 8.12 Free Fall with Air Drag 

Consider an object of mass m that is in free fall but experiencing air resistance. The 
magnitude of the drag force is given by Eq. (8.6.1), where ρ is the density of air, A is 
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