
  

  
 
8.6  Drag  Forces  in  Fluids   
 
When a  solid object  moves  through a  fluid it  will  experience  a  resistive  force, called the  

The  fluid may be  a  liquid or a  gas. This  force  is  a  very 
n both the  properties  of the  object  and the  properties  of 
he  speed, size, and shape  of the  object. It  also depends  
ressibility of the fluid.  

drag force, opposing its  motion. 
complicated force  that  depends  o
the  fluid. The  force  depends  on t
on the density, viscosity and comp
 
For objects  moving in air, the  air drag is  
still  quite  complicated but  for rapidly 
moving objects  the  resistive  force  is  
roughly proportional  to the  square  of the  
speed  v , the cross-sectional area  A  of 
the  object  in a  plane  perpendicular to the  
motion, the density ρ  of the air, and 
independent  of the  viscosity of the  air. 
Traditional  the  magnitude  of the  air drag 
for rapidly moving objects is written as  
 

1              F  Aρv2 
drag = CD  .             (8.6.1)  

  2
The coefficient  CD  is called the drag 
coefficient, a  dimensionless  number that  
is  a  property of the  object.  Table  8.1 
lists  the  drag coefficient  for some  simple  
shapes, (each of these  objects  has  a  
Reynolds number of order  104 ).  
 
 The  above  model  for air drag does  n
oil, molasses, honey, or water will  fall  at  diff
the  fluid. For very low  speeds, the  drag for
proportional  to the  viscosity η  of the  fluid. 

 
   

 

 

   
      

    
       

Table 8.1 Drag Coefficients 

Sphere

Half-sphere

Cone

Cube

Angled cube

Long cylinder

Short cylinder

Streamlined
body

Streamlined
half-body

Shape Drag coefficient

0.47

0.42

0.50

1.05

0.80

0.82

1.15

0.04

0.09

ot extend to all fluids. An object dropped in 
erent rates due to the different viscosities of 

ce depends linearly on the speed and is also 
For the special case of a sphere of radius R , 
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the drag force law can be exactly deduced from the principles of fluid mechanics and is 
given by ! 

Fdrag = −6πηRv ! (sphere) . (8.6.2) 

This force law is known as Stokes’ Law. The coefficient of viscosity η has SI units of 
[N ⋅m−2 ⋅s] = [Pa ⋅s] = [kg ⋅ m−1 ⋅s−1] ; a cgs unit called the poise is often encountered . 
Some typical coefficients of viscosity are listed in Table 8.2. 

Table 8.2: Coefficients of viscosity 

fluid Temperature, 
0 C 

Coefficient of viscosity η ; [kg ⋅m−1 ⋅s−1] 

Acetone 25 3.06 ×10−4 

Air 15 1.81×10−5 

Benzene 25 6.04 ×10−4 

Blood 37 (3− 4) ×10−3 

Castor oil 25 0.985 
Corn Syrup 25 1.3806 
Ethanol 25 1.074 ×10−3 

Glycerol 20 1.2 
Methanol 25 5.44 ×10−4 

Motor oil (SAE 10W) 20 6.5×10−2 

Olive Oil 25 8.1×10−2 

Water 10 1.308 ×10−3 

Water 20 1.002 ×10−3 

Water 60 0.467 ×10−3 

Water 100 0.28 ×10−3 

This law can be applied to the motion of slow moving objects in a fluid, for example: 
very small water droplets falling in a gravitational field, grains of sand settling in water, 
or the sedimentation rate of molecules in a fluid. In the later case, If we model a molecule 
as a sphere of radius R , the mass of the molecule is proportional to R3 and the drag force 
is proportion to R , therefore different sized molecules will have different rates of 
acceleration. This is the basis for the design of measuring devices that separate 
molecules of different molecular weights. 

In many physical situations the force on an object will be modeled as depending on the 
object’s velocity. We have already seen static and kinetic friction between surfaces 
modeled as being independent of the surfaces’ relative velocity. Common experience 
(swimming, throwing a Frisbee) tells us that the frictional force between an object and a 
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fluid can be a complicated function of velocity. Indeed, these complicated relations are 
an important part of such topics as aircraft design. 

Example 8.5 Drag Force at Low Speeds 

h 
g 

marble: 
mass m and 
radius R 

olive oil 

Figure 8.31 Example 8.5 

A spherical marble of radius R and mass m is released from rest and falls under the 
influence of gravity through a jar of olive oil of viscosity η . The marble is released from 
rest just below the surface of the olive oil, a height h from the bottom of the jar. The 
gravitational acceleration is g (Figure 8.31). Neglect any force due to the buoyancy of 

!v
the olive oil. (i) Determine the velocity of the marble as a function of time, (ii) what is the 

!v∞maximum possible velocity =
 (t = ∞) (terminal velocity), that the marble can obtain, 
(iii) determine an expression for the viscosity of olive oil η in terms of g , m , R , and 

! v∞ 
= , (iv) determine an expression for the position of the marble from just below the 

surface of the olive oil as a function of time. 

Solution: Choose positive y -direction downwards with the origin at the initial position of 
the marble as shown in Figure 8.32(a). 

v∞ 

y(t) 

ĵ 
h 

+ y 

O 

v(t) 

(a) 

ĵ 

O 

. 
+ y 

mg 

Fdrag 

(b) 

Figure 8.32 (a) Coordinate system for marble; (b) free body force diagram on marble 

There are two forces acting on the marble: the gravitational force, and the drag force 
which is given by Eq. (8.6.2). The free body diagram is shown in the Figure 8.32(b). 
Newton’s Second Law is then 

dv mg − 6πηRv = m , (8.6.3)
dt 
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where v is the y -component of the velocity of the marble. Let γ = 6πηR / m ; the SI 
units γ are [s−1] . Then Eq. (8.6.3) becomes 

dv g −γ v = , (8.6.4)
dt 

Suppose the object has an initial y -component of velocity v(t = 0) = 0 . We shall solve 
Eq. (8.6.3) using the method of separation of variables. The differential equation may be 
rewritten as 

dv = −γ dt . (8.6.5)
(v − g / γ ) 

The integral version of Eq. (8.6.5) is then 

v′=v(t ) t′=tdv′ = −γ dt′∫ ∫v′ − g / γ . (8.6.6)v′=0 t′=0 

Integrating both sides of Eq. (8.6.6) yields 

⎛ v(t) − g / γ ⎞ 
⎠⎟ 
= −γ tln 

⎝⎜ −g / γ . (8.6.7) 

Recall that eln x = x , therefore upon exponentiation of Eq. (8.6.7) yields 

v(t) − g / γ −γ t= e . (8.6.8)
−g / γ 

Thus the y -component of the velocity as a function of time is given by 
g −γ t ) = 

mg −(6πηR/m)t )v(t) = (1− e (1− e (8.6.9).γ 6πηR 

A plot of v(t) vs. t is shown in Figure 8.31 with parameters R = 5.00 ×10−3m , 
−1 −1η = 8.10 ×10−2 kg ⋅ m−1 ⋅s , m = 4.08 ×10−3 kg , and g / γ = 1.87 m ⋅s . 
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v(t)

t

[m s 1]

5

1 2 [s][s]

Figure 8.33 Plot of y -component of the velocity v(t) vs. t for marble falling through 
oil with g / γ = 1.87 m ⋅s−1 . 

−(6πηR/m)tFor large values of t , the term e approaches zero, and the marble reaches a 
terminal velocity 

mg v∞ 
= v(t = ∞) = (8.6.10)

6πηR . 

The coefficient of viscosity can then be determined from the terminal velocity by the 
condition that 

mg η = (8.6.11).6π Rvter 

Let ρ m denote the density of the marble. The mass of the spherical marble is 

m = (4 / 3)ρ mR3 . The terminal velocity is then 

R22ρ m g
v∞ 

= (8.6.12).9η 

The terminal velocity depends on the square of the radius of the marble, indicating that 
larger marbles will reach faster terminal speeds. 

The position of the marble as a function of time is given by the integral expression 

t′=t 

y(t) − y(t = 0) = ∫ v(t′)dt′ , (8.6.13) 
t′=0 

which after substitution of Eq. (8.6.9) and integration using the initial condition that 
y(t = 0) = 0 , becomes 

g gy(t) = t + (e−γ t −1) . (8.6.14)
γ γ 2 
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Example 8.6 Drag Forces at High Speeds 

An object of mass m at time t = 0 is moving rapidly with velocity v! 0 through a fluid of 
density ρ . Let A denote the cross-sectional area of the object in a plane perpendicular 
to the motion. The object experiences a retarding drag force whose magnitude is given by 
Eq. (8.6.1). Determine an expression for the velocity of the object as a function of time. 

Solution: Choose a coordinate system such that the object is moving in the positive x -
direction, v ! = vî . Set β = (1/ 2)CD Aρ . Newton’s Second Law can then be written as 

2 dv−β v = . (8.6.15)
dt 

An integral version of Eq. (8.6.15) is then 

v′=v(t ) t′=tdv′ ∫ v′2 = −β ∫ dt′ . (8.6.16) 
v′=v0 t′=0 

Integration yields 
⎛ 1 1 ⎞− −

⎠⎟ 
= −βt . (8.6.17)

⎝⎜ v(t) v0 

After some algebraic rearrangement the x -component of the velocity as a function of 
time is given by 

v0 1 v(t) = = v0 , (8.6.18)
1+ v0βt 1+ t / τ 

where τ = 1/ v0β . A plot of v(t) vs. t is shown in Figure 8.34 with initial conditions 

v0 = 20 m ⋅s−1 and β = 0.5 s−1 . 

v(t)

m s 1]

t
[s]

20

5

1 2Figure 8.34 Plot of v(t) vs. t for damping force Fdrag = CD Aρv
2 
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