8.5.2 Continuous Systems and Newton's Second Law as a Differential Equations

We can determine the tension at a distance y from the ceiling in Example 8.4, by an alternative method, a technique that will generalize to many types of "continuous systems". Choose a coordinate system with the origin at the ceiling and the positive y-direction pointing downward as in Figure 8.25. Consider as the system a small element of the rope between the points y and $y + \Delta y$. This small element has length Δy , The small element has mass $\Delta m = (M/L)\Delta y$ and is shown in Figure 8.29.

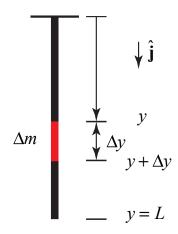


Figure 8.29 Small mass element of the rope

The forces acting on the small element are the tension, T(y) at y directed upward, the tension $T(y + \Delta y)$ at $y + \Delta y$ directed downward, and the gravitational force Δmg directed downward. The tension $T(y + \Delta y)$ is equal to the tension T(y) plus a small difference ΔT ,

$$T(y + \Delta y) = T(y) + \Delta T$$
. (8.5.15)

The small difference in general can be positive, zero, or negative. The free body force diagram is shown in Figure 8.30.

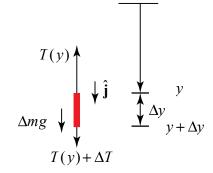


Figure 8.30 Free body force diagram on small mass element

Now apply Newton's Second Law to the small element

$$\Delta mg + T(y) - (T(y) + \Delta T) = 0$$
(8.5.16)

The difference in the tension is then $\Delta T = -\Delta mg$. We now substitute our result for the mass of the element $\Delta m = (M / L)\Delta y$, and find that that

$$\Delta T = -(M/L)\Delta yg \quad . \tag{8.5.17}$$

Divide through by Δy , yielding $\Delta T / \Delta y = -(M / L)g$. Now take the limit in which the length of the small element goes to zero, $\Delta y \rightarrow 0$,

$$\lim_{\Delta y \to 0} \frac{\Delta T}{\Delta y} = -(M/L)g \quad . \tag{8.5.18}$$

Recall that the left hand side of Eq. (8.5.18) is the definition of the derivative of the tension with respect to y, and so we arrive at Eq. (8.5.14),

$$\frac{dT}{dy} = -(M/L)g.$$

We can solve the differential equation, Eq. (8.5.14), by a technique called **separation of** variables. We rewrite the equation as dT = -(M / L)gdy and integrate both sides. Our integral will be a definite integral in which we integrate a 'dummy' integration variable y' from y' = 0 to y' = y and the corresponding T' from T' = T(y = 0) to T' = T(y):

$$\int_{T'=T(y=0)}^{T'=T(y)} dT' = -(M/L)g \int_{y'=0}^{y'=y} dy' .$$
(8.5.19)

After integration and substitution of the limits, we have that

$$T(y) - T(y=0) = -(M/L)gy$$
. (8.5.20)

Us the fact that tension at the top of the rope is T(y=0) = Mg and find that

$$T(y) = Mg(1 - y/L)$$

in agreement with our earlier result, Eq. (8.5.13).

MIT OpenCourseWare https://ocw.mit.edu

8.01 Classical Mechanics Fall 2016

For Information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.