
  

   
 

 
        

 
 

 
   

6.5 Angular Velocity and Angular Acceleration 
6.5.1. Angular Velocity 

We shall always choose a right-handed cylindrical coordinate system. If the positive z -
axis points up, then we choose θ to be increasing in the counterclockwise direction as 
shown in Figures 6.6. 

O 

+x 

+ y 
.r 
k̂ 

ˆ 
r̂ 

+ z 

Figure 6.6 Right handed coordinate system 

  

 
  

      
  

 
    

  

 
              

  
 

 
 

  

      
         

 
 

 

 
    

  

 

For a point object undergoing circular motion about the z -axis, the angular velocity !
vector ω is directed along the z -axis with z -component equal to the time derivative of 
the angle θ , 

! dθω = k̂ = ω z k̂ . (6.5.4)
dt 

The SI units of angular velocity are [rad ⋅ s−1] . Note that the angular speed is just the 
magnitude of the z -component of the angular velocity, 

dθ . (6.5.5)ω ≡ ω = z dt 

Figure 6.7(a) Angular velocity vector Figure 6.7(b) Angular velocity 
vector for motion with dθ / dt > 0 . for motion with dθ / dt < 0 . 

The velocity and angular velocity are related by 

!
v = ω × r = 
!
 !
 dθ dθˆ ˆk × r r̂ = r θ . (6.5.6)


dt dt 
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If the velocity of the object is in the +θ̂ -direction, (rotating in the counterclockwise 
direction in Figure 6.7(a)), then the z -component of the angular velocity is positive, 
ω z = dθ / dt > 0 . The angular velocity vector then points in the +k̂ -direction as shown in 

Figure 6.7(a). If the velocity of the object is in the −θ̂ -direction, (rotating in the 
clockwise direction in Figure 6.7(b)), then the z -component of the angular velocity 
angular velocity is negative, ω z = dθ / dt < 0 . The angular velocity vector then points in 

the −k̂ -direction as shown in Figure 6.7(b). 
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Figure 6.7(a) Angular velocity vector Figure 6.7(b) Angular velocity 
vector for motion with dθ / dt > 0 . for motion with dθ / dt < 0 . 

The velocity and angular velocity are related by 

!
v = ω × r = 
!
 !
 dθ dθˆ ˆk × r r̂ = r θ . (6.5.6)


dt dt 

2



  

 
 

  
 

        
      

    

   

  
   

 
     

 

  
 

 
 

 

 
 

  

 
 

 
   

 
 

  
      

  
      

 
 

 
 

  
 

 
    

  

 

Example 6.2 Angular Velocity 

A particle is moving in a circle of radius R . At t = 0 , it is located on the x -axis. The 
angle the particle makes with the positive x -axis  is given by θ(t) = At − Bt3 , where A 
and B are positive constants. Determine (a) the angular velocity vector, and (b) the 
velocity vector. Express your answer in polar coordinates. (c) At what time, t = t1 , is the 
angular velocity zero? (d) What is the direction of the angular velocity for (i) t < t1 , and 
(ii) t > t1? 

Solution: The derivative of θ(t) = At − Bt3 is 

dθ(t) 
= A − 3Bt2 .

dt 

Therefore the angular velocity vector is given by 

! dθ(t)
ω(t) = 

dt 
k̂ = (A − 3Bt 2 )k̂ . 

The velocity is given by 
!v(t) = R dθ(t) θ̂(t) = R(A − 3Bt 2 )θ̂(t) .

dt 

The angular velocity is zero at time t = t1 when 

A − 3Bt1
2 = 0 ⇒ t1 = 

dθ(t) !
For t < t1 , = A − 3Bt1

2 > 0 hence ω(t) points in the positive k̂ -direction. 
dt 

dθ(t) !
For t > t1 , = A − 3Bt1

2 < 0 hence ω(t) points in the negative k̂ -direction. 
dt 

6.5.2 Angular Acceleration 

In a similar fashion, for a point object undergoing circular motion about the fixed z -axis, 
the angular acceleration is defined as 

d 2θα
!
= 

dt2 k̂ = α k̂ . (6.5.7)z 

A / 3B . 
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The SI units of angular acceleration are [rad ⋅s−2] . The magnitude of the angular 
acceleration is denoted by the Greek symbol alpha, 

d 2θ!
α ≡ α = . (6.5.8)

dt2 

There are four special cases to consider for the direction of the angular velocity. Let’s 
!

first consider the two types of motion with α pointing in the +k̂ -direction: (i) if the 
object is rotating counterclockwise and speeding up then both dθ / dt > 0 and 
d 2θ / dt2 > 0 (Figure 6.8(a), (ii) if the object is rotating clockwise and slowing down then 
dθ / dt < 0 but d 2θ / dt2 > 0 (Figure 6.8(b). There are two corresponding cases in which 
!
α pointing in the −k̂ -direction: (iii) if the object is rotating counterclockwise and 
slowing down then dθ / dt > 0 but d 2θ / dt2 < 0 (Figure 6.9(a), (iv) if the object is 
rotating clockwise and speeding up then both dθ / dt < 0 and d 2θ / dt2 < 0 (Figure 6.9(b). 
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Figure 6.8(a) Angular acceleration vector Figure 6.8(b) Angular velocity 
vector for motion with dθ / dt > 0 , for motion with dθ / dt < 0 , and      
and d 2θ / dt2 > 0 . d 2θ / dt2 > 0 . 

O 

+x 

+ y 
.r v 
k̂ 

ˆ 
r̂ 

+ z 
z 

= 
d 

dt z 
= 
d
2 

dt
2 

> 0< 0 

O 

+x 

+ y 
.r 

v 

k̂ 

ˆ 
r̂ 

+ z 
z 

= 
d 

dt 
< 0 

z 
= 
d
2 

dt
2 < 0 

Figure 6.9(a) Angular acceleration vector Figure 6.9(b) Angular velocity 
vector for motion with dθ / dt > 0 , for motion with dθ / dt < 0 , and      
and d 2θ / dt2 < 0 . d 2θ / dt2 < 0 . 
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Example 6.3 Integration and Circular Motion Kinematics 

A point-like object is constrained to travel in a circle. The z -component of the angular 
acceleration of the object for the time interval [0, t1] is given by the function 

⎧ ⎛ t ⎞ 
⎪b 

⎝⎜
1− 

⎠⎟ 
; 0 ≤ t ≤ t1α z (t) = ⎨ t1 , 

⎪0; t > t1⎩ 

where b is a positive constant with units rad ⋅s−2 . 

a) Determine an expression for the angular velocity of the object at t = t1 . 

b) Through what angle has the object rotated at time t = t1 ? 

Solution: 

a) The angular velocity at time t = t1 is given by 

t′=t1 t′=t1	 2⎛ t′ ⎞ ⎛ t1 
⎞ bt1ω ) −ω (t = 0) = α (t′) dt′ = b 1− = b t1 − z (t1 z	 ∫ z ∫ ⎝⎜ ⎠⎟ 

dt′ 
⎝⎜ 2t1 ⎠

⎟ = 
2t′=0 t′=0 t1 

b) In order to find the angle θ(t1) −θ(t = 0) that the object has rotated through at time 
t = t1 , you first need to find ω z (t) by integrating the z-component of the angular 
acceleration 

t′=t t′=t ⎛ t′ ⎞ ⎛ t2 ⎞
ω z (t) −ω z (t = 0) = ∫ α z (t′) dt′ = ∫ b 1− 

⎠⎟ 
dt′ = b t − 

⎠⎟ 
. 

⎝⎜ ⎝⎜ 2t1t′=0 t′=0 t1 

⎛ t2 ⎞ 
Because it started from rest, ω (t = 0) = 0 , hence ω (t) = b t − 

⎠⎟ 
; 0 ≤ t ≤ t1 . z	 z ⎝⎜ 2t1 

Then integrate ω z (t) between t = 0 and t = t1 to find that 

t′=t1 t′=t1	 2 3 2⎛ t′2 ⎞ ⎛ t1 t1 
⎞ bt1θ(t1) −θ(t = 0) = ∫ ω z (t′) dt′ = ∫ b t′ − 

⎠⎟ 
dt′ = b − . 

t′=0 t′=0 ⎝⎜ 2t1 ⎝⎜ 2 6t1 ⎠
⎟ = 

3 
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6.5 Non-circular Central Planar Motion 

Let’s now consider central motion in a plane that is non-circular. In Figure 6.10, we show 
the spiral motion of a moving particle. In polar coordinates, the key point is that the time 
derivative dr / dt of the position function r is no longer zero. The second derivative 
d 2r / dt2 also may or may not be zero. In the following calculation we will drop all 
explicit references to the time dependence of the various quantities. The position vector is 
still given by Eq. (6.2.1), which we shall repeat below 

!r = r r̂ . (6.5.9) 

Because dr / dt ≠ 0 , when we differentiate Eq. (6.5.9), we need to use the product rule 

d 
!

! r dr d r̂v = = r̂+ r . (6.5.10)
dt dt dt 

Substituting Eq. (6.2.4) into Eq. (6.5.10) 

! r dr dθv = 
d! = r̂ + r θ̂ = vr r̂ + vθ θ̂ . (6.5.11)
dt dt dt 

The velocity is no longer tangential but now has a radial component as well 

dr vr = (6.5.12)
dt 

. 

In order to determine the acceleration, we now differentiate Eq. (6.5.11), again using the 
product rule, which is now a little more involved: 

d 
!

! v d 2r dr d r̂ dr dθ d 2θ dθ d θ̂ˆ ˆa = = r̂ + θ + r θ + r . (6.5.13)
dt dt 2 dt dt 

+ 
dt dt dt 2 dt dt 

Now substitute Eqs. (6.2.4) and (6.2.7) for the time derivatives of the unit vectors in Eq. 
(6.5.13), and after collecting terms yields 

! ⎛ d 2r ⎛ dθ ⎞ 
2 ⎞ ⎛ 

2 
dr dθ d 2θ ⎞ ˆa = r + θ 

⎝⎜ dt 2 − r ⎝⎜ dt ⎠⎟ ⎠⎟ 
ˆ

⎝⎜ dt dt 
+ r 

dt 2 ⎠⎟ . (6.5.14) 
ˆ= arr̂+ aθθ 

The radial and tangential components of the acceleration are now more complicated than 
then in the case of circular motion due to the non-zero derivatives of dr / dt and d 2r / dt2 . 
The radial component is 
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d 2r ⎛ dθ ⎞ 
2 

ar = . (6.5.15)
dt 2 − r ⎝⎜ dt ⎠⎟ 

and the tangential component is 

= 2 
dr dθ d 2θ aθ . (6.5.16)
dt dt 

+ r 
dt 2 

The firs term in the tangential component of the acceleration, 2(dr / dt)(dθ / dt) has a 
special name, the coriolis acceleration, 

= 2 
dr dθ acor . (6.5.17)
dt dt 

Example 6.4 Spiral Motion 

⎞
⎠

⎛
⎝

A particle moves outward along a spiral starting from the origin at t = 0 . Its trajectory is 
given by r = bθ , where b is a positive constant with units [m ⋅ rad-1] . θ increases in time 
according to θ = ct2 , where c > 0 is a positive constant (with units [rad ⋅s−2] ). 

a) Determine the acceleration as a function of time. 
b) Determine the time at which the radial acceleration is zero. 
c) What is the angle when the radial acceleration is zero? 
d) Determine the time at which the radial and tangential accelerations have equal 

magnitude. 

Solution: 

a) The position coordinate as a function of time is given by r = bθ = bct2 . The 
acceleration is given by Eq. (6.5.14). In order to calculate the acceleration, we need to 
calculate the four derivatives dr / dt = 2bct , d 2r / dt2 = 2bc , dθ / dt = 2ct , and 
d 2θ / dt2 = 2c . The acceleration is then 

!a = (2bc − 4bc3t 4 ) r̂ + (8bc2t 2 + 2bc2t 2 )θ̂ = (2bc − 4bc3t 4 ) r̂ +10bc2t 2 θ̂ . 

b) The radial acceleration is zero when 

⎜ ⎟ 
1/4 1
t1 =
 

2c2 .
 

c) The angle when the radial acceleration is zero is 
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θ1 = ct1
2 = 2 / 2 . 

d)	 The radial and tangential accelerations have equal magnitude when after some 
algebra 

(2bc − 4bc3t 4 ) = 10bc2t 2 ⇒ 0 = t 4 + (5 / 2c)t 2 − (1 / 2c2 ) . 

This equation has as only positive solution for t 2 : 

−(5 / 2c) ± ((5 / 2c)2 + 2c2 )1/2 33 − 5t2
2 =	 = .

2	 4c 

Therefore the magnitudes of the two components are equal when 

t2 = 
33 − 5 

4c 
. 
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