6.3 Circular Motion: Tangential and Radial Acceleration

When the motion of an object is described in polar coordinates, the acceleration has two components, the tangential component a_{θ}, and the radial component, a_{r}. We can write the acceleration vector as

$$
\begin{equation*}
\overrightarrow{\mathbf{a}}=a_{r} \hat{\mathbf{r}}(t)+a_{\theta} \hat{\boldsymbol{\theta}}(t) . \tag{6.3.1}
\end{equation*}
$$

Keep in mind that as the object moves in a circle, the unit vectors $\hat{\mathbf{r}}(t)$ and $\hat{\boldsymbol{\theta}}(t)$ change direction and hence are not constant in time.

We will begin by calculating the tangential component of the acceleration for circular motion. Suppose that the tangential velocity $v_{\theta}=r d \theta / d t$ is changing in magnitude due to the presence of some tangential force; we shall now consider that $d \theta / d t$ is changing in time, (the magnitude of the velocity is changing in time). Recall that in polar coordinates the velocity vector Eq. (6.2.8) can be written as

$$
\begin{equation*}
\overrightarrow{\mathbf{v}}(t)=r \frac{d \theta}{d t} \hat{\boldsymbol{\theta}}(t) \tag{6.3.2}
\end{equation*}
$$

We now use the product rule to determine the acceleration.

$$
\begin{equation*}
\overrightarrow{\mathbf{a}}(t)=\frac{d \overrightarrow{\mathbf{v}}(t)}{d t}=r \frac{d^{2} \theta(t)}{d t^{2}} \hat{\boldsymbol{\theta}}(t)+r \frac{d \theta(t)}{d t} \frac{d \hat{\boldsymbol{\theta}}(t)}{d t} \tag{6.3.3}
\end{equation*}
$$

Recall from Eq. (6.2.3) that $\hat{\boldsymbol{\theta}}(t)=-\sin \theta(t) \hat{\mathbf{i}}+\cos \theta(t) \hat{\mathbf{j}}$. So we can rewrite Eq. (6.3.3) as

$$
\begin{equation*}
\overrightarrow{\mathbf{a}}(t)=r \frac{d^{2} \theta(t)}{d t^{2}} \hat{\boldsymbol{\theta}}(t)+r \frac{d \theta(t)}{d t} \frac{d}{d t}(-\sin \theta(t) \hat{\mathbf{i}}+\cos \theta(t) \hat{\mathbf{j}}) \tag{6.3.4}
\end{equation*}
$$

We again use the chain rule (Eqs. (6.2.5) and (6.2.6)) and find that

$$
\begin{equation*}
\overrightarrow{\mathbf{a}}(t)=r \frac{d^{2} \theta(t)}{d t^{2}} \hat{\boldsymbol{\theta}}(t)+r \frac{d \theta(t)}{d t}\left(-\cos \theta(t) \frac{d \theta(t)}{d t} \hat{\mathbf{i}}-\sin \theta(t) \frac{d \theta(t)}{d t} \hat{\mathbf{j}}\right) \tag{6.3.5}
\end{equation*}
$$

Recall that $\omega \equiv d \theta / d t$, and from Eq. (6.2.2), $\hat{\mathbf{r}}(t)=\cos \theta(t) \hat{\mathbf{i}}+\sin \theta(t) \hat{\mathbf{j}}$, therefore the acceleration becomes

$$
\begin{equation*}
\overrightarrow{\mathbf{a}}(t)=r \frac{d^{2} \theta(t)}{d t^{2}} \hat{\boldsymbol{\theta}}(t)-r\left(\frac{d \theta(t)}{d t}\right)^{2} \hat{\mathbf{r}}(t) \tag{6.3.6}
\end{equation*}
$$

The tangential component of the acceleration is then

$$
\begin{equation*}
a_{\theta}=r \frac{d^{2} \theta(t)}{d t^{2}} \tag{6.3.7}
\end{equation*}
$$

The radial component of the acceleration is given by

$$
\begin{equation*}
a_{r}=-r\left(\frac{d \theta(t)}{d t}\right)^{2}=-r \omega^{2}<0 \tag{6.3.8}
\end{equation*}
$$

Because $a_{r}<0$, that radial vector component $\overrightarrow{\mathbf{a}}_{r}(t)=-r \omega^{2} \hat{\mathbf{r}}(t)$ is always directed towards the center of the circular orbit.

Example 6.1 Circular Motion Kinematics

A particle is moving in a circle of radius R. At $t=0$, it is located on the x-axis. The angle the particle makes with the positive x-axis is given by $\theta(t)=A t^{3}-B t$, where A and B are positive constants. Determine (a) the velocity vector, and (b) the acceleration vector. Express your answer in polar coordinates. At what time is the centripetal acceleration zero?

Solution:

The derivatives of the angle function $\theta(t)=A t^{3}-B t$ are $d \theta / d t=3 A t^{2}-B$ and $d^{2} \theta / d t^{2}=6 A t$. Therefore the velocity vector is given by

$$
\overrightarrow{\mathbf{v}}(t)=R \frac{d \theta(t)}{d t} \hat{\boldsymbol{\theta}}(t)=R\left(3 A t^{2}-B t\right) \hat{\boldsymbol{\theta}}(t)
$$

The acceleration is given by

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}(t)=R \frac{d^{2} \theta(t)}{d t^{2}} \hat{\boldsymbol{\theta}}(t)-R\left(\frac{d \theta(t)}{d t}\right)^{2} \hat{\mathbf{r}}(t) \\
& =R(6 A t) \hat{\boldsymbol{\theta}}(t)-R\left(3 A t^{2}-B\right)^{2} \hat{\mathbf{r}}(t)
\end{aligned}
$$

The centripetal acceleration is zero at time $t=t_{1}$ when

$$
3 A t_{1}^{2}-B=0 \Rightarrow t_{1}=\sqrt{B / 3 A}
$$

MIT OpenCourseWare
https://ocw.mit.edu

8.01 Classical Mechanics

Fall 2016

For Information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

