
 
 
 

 
 

 
 

  
 

 
          

       
          

     
 

 
  

  

 
   

 
     
 

  
 

  
   
     
 

    
    

     
 

  
 

  
 

4.5 Constant Acceleration 

v(t) 

t 

v(t) = v0 + at 

(a) 

a(t) 

a 

v0 

t 

a(t) = a 

(b) 

Area = at 

Figure 4.8 Constant acceleration: (a) velocity, (b) acceleration 

When the x -component of the velocity is a linear function (Figure 4.8(a)), the average 
acceleration, Δv / Δt , is a constant and hence is equal to the instantaneous acceleration 
(Figure 4.8(b)). Let’s consider a body undergoing constant acceleration for a time interval 
[0, t] , where Δt = t . Denote the x -component of the velocity at time t = 0 by 
v0 ≡ v(t = 0) . Therefore the x -component of the acceleration is given by 

Δv v(t) − v0a(t) = = . (4.4.1)
Δt t 

Thus the x -component of the velocity is a linear function of time given by 

v(t) = v0 + at . (4.4.2) 

4.5.1 Velocity: Area Under the Acceleration vs. Time Graph 

In Figure 4.8(b), the area under the acceleration vs. time graph, for the time interval 
Δt = t − 0 = t , is 

Area(a(t), t) = at . (4.4.3) 

From Eq. (4.4.2), the area is the change in the x -component of the velocity for the 
interval [0, t] : 

Area(a(t),t) = at = v(t) − v0 = Δv . (4.4.4) 

4.5.2 Displacement: Area Under the Velocity vs. Time Graph 

In Figure 4.9 shows a graph of the x -component of the velocity vs. time for the case of 
constant acceleration (Eq. (4.4.2)). 
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t 

v(t) 
v(t) = v0 + at 

v0 
A1 = v0 t 

A2 = 
1 
2 
(v(t) v0 ) 

O 

Figure 4.9 Graph of velocity as a function of time for a constant. 

The region under the velocity vs. time curve is a trapezoid, formed from a rectangle with 
area A1 = v0 t , and a triangle with area A2 = (1/ 2)(v(t) − v0 ) . The total area of the 
trapezoid is given by 

1Area(v(t),t) = A1 + A2 = v0 t + (v(t) − v0 ) . (4.4.5)
2 

Substituting for the velocity (Eq. (4.4.2)) yields 

Area(v(t),t) = v0 t + 
1 at2 . (4.4.6)
2 

Recall that from Example 4.2 (setting b = a and Δt = t ), 

1 
v = v0 + at = Δx / t , (4.4.7)ave 2 

therefore Eq. (4.4.6) can be rewritten as 

1Area(v(t),t) = (v0 + at)t = v t = Δx (4.4.8)
2 ave 

The displacement is equal to the area under the graph of the x -component of the velocity 
vs. time. The position as a function of time can now be found by rewriting Equation 
(4.4.8) as 

x(t) = x0 + v0 t + 
1 

at2 . (4.4.9)
2 

Figure 4.10 shows a graph of this equation. Notice that at t = 0 the slope is non-zero, 
corresponding to the initial velocity component v0 . 
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Figure 4.10 Graph of position vs. time for constant acceleration. 

Example 4.4 Accelerating Car 

A car, starting at rest at t = 0 , accelerates in a straight line for 100 m with an unknown 
constant acceleration. It reaches a speed of 20 m ⋅ s−1 and then continues at this speed for 
another 10 s . (a) Write down the equations for position and velocity of the car as a 
function of time. (b) How long was the car accelerating? (c) What was the magnitude of 
the acceleration? (d) Plot speed vs. time, acceleration vs. time, and position vs. time for 
the entire motion. (e) What was the average velocity for the entire trip? 

Solutions: (a) For the acceleration a , the position x(t) and velocity v(t) as a function of 
time t for a car starting from rest are 

x(t) = (1/ 2) at2 

(4.4.10)
vx (t) = at. 

b) Denote the time interval during which the car accelerated by t1 . We know that the 

position x(t1) = 100m and v(t1) = 20 m ⋅ s−1 . Note that we can eliminate the acceleration 
a between the Equations (4.4.10) to obtain 

x(t) = (1 / 2)v(t) t . (4.4.11) 

We can solve this equation for time as a function of the distance and the final speed 
giving 

t = 2 
x(t) 
v(t) 

. (4.4.12) 

We can now substitute our known values for the position x(t1 ) = 100m and 

v(t1) = 20 m ⋅ s−1 and solve for the time interval that the car has accelerated 
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x(t1) 100 m 
t1 = 2 = 2 −1 = 10s . (4.4.13)

v(t1) 20 m ⋅ s

c) We can substitute into either of the expressions in Equation (4.4.10); the second is 
slightly easier to use, 

v(t1) 20 m ⋅ s−1 
−2a = = = 2.0m ⋅ s . (4.4.14)

t1 10s 

d) The x -component of acceleration vs. time, x -component of the velocity vs. time, and 
the position vs. time are piece-wise functions given by 

-2 ;⎧2 m ⋅s 0 < t ≤ 10 s a(t) = ⎨ , 
⎩0; 10 s < t < 20 s 

⎧ -2 )t;⎪(2 m ⋅s 0 < t ≤ 10 s 
v(t) = ⎨ ,

-1;⎪20 m ⋅s 10 s ≤ t ≤ 20 s ⎩
⎧ -2 )t2;⎪(1/ 2)(2 m ⋅s 0 < t ≤ 10 s 

x(t) = ⎨ . 
⎩100 m +(20 m ⋅s-2 )( t −10 s); 10 s ≤ t ≤ 20 s ⎪ 

The graphs of the x -component of acceleration vs. time, x -component of the velocity vs. 
time, and the position vs. time are shown in Figure 4.11. 

(e) After accelerating, the car travels for an additional ten seconds at constant speed and 
during this interval the car travels an additional distance Δx = v(t1) × 10s=200m (note 
that this is twice the distance traveled during the 10s of acceleration), so the total 
distance traveled is 300m and the total time is 20s , for an average velocity of 

300m −1v ave = =15m ⋅s . (4.4.15)
20s 

x(t)a(t) v(t) 

-2 100 m 20 m s2 m s

t 

-1 

t t
10 s 20 s 10 s 20 s 10 s 20 s 

Figure 4.11 Graphs of the x-components of acceleration, velocity and position as piece-
wise functions 
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Example 4.5 Catching a Bus 

At the instant a traffic light turns green, a car starts from rest with a given constant 
acceleration, 3.0 m ⋅s-2 . Just as the light turns green, a bus, traveling with a given 
constant velocity, 1.6 × 101 m ⋅ s-1 , passes the car. The car speeds up and passes the bus 
some time later. How far down the road has the car traveled, when the car passes the bus? 

Solution: 

There are two moving objects, bus and the car. Each object undergoes one stage of one-
dimensional motion. We are given the acceleration of the car, the velocity of the bus, and 
infer that the position of the car and the bus are equal when the bus just passes the car. 
Figure 4.12 shows a qualitative sketch of the position of the car and bus as a function of 
time. 

x 

x2 (t)bus 

x1(t)car 

0 t 
ta 

Figure 4.12 Position vs. time of the car and bus 

Choose a coordinate system with the origin at the traffic light and the positive x -
direction such that car and bus are travelling in the positive x -direction. Set time t = 0 as 
the instant the car and bus pass each other at the origin when the light turns green. Figure 
4.13 shows the position of the car and bus at time t . 

x2 (t) 

x1(t) 

0 + x 

Figure 4.13 Coordinate system for car and bus 

Let x1(t) denote the position function of the car, and x2(t) the position function for the 
bus. The initial position and initial velocity of the car are both zero, x1,0 = 0 and v1,0 = 0 , 
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and the acceleration of the car is non-zero a1 ≠ 0 . Therefore the position and velocity 
functions of the car are given by 

x1(t) = 
1 

a1t
2 ,

2 
v1(t) = a1t . 

The initial position of the bus is zero, x2,0 = 0 , the initial velocity of the bus is non-zero, 

≠ 0 , and the acceleration of the bus is zero, a2 = 0 . Therefore the velocity is constant, v2,0 

v2 , and the position function for the bus is given by x2 t .(t) = v2,0 (t) = v2,0

Let t = ta correspond to the time that the car passes the bus. Then at that instant, the 
position functions of the bus and car are equal, x1(ta ) = x2 (ta ) . We can use this condition 
to solve for t : a 

2 2v2,0 (2)(1.6 ×101 m ⋅s(1/ 2)a1ta = v2,0ta ⇒ ta = = -2 ) 

-1) = 1.1×101s . 
a1 (3.0m ⋅s

Therefore the position of the car at ta is 

1 2 2v2,0 
2 (2)(1.6 ×101 m ⋅s

x1(ta ) = a1ta = = -2 ) 

-1)2 

= 1.7 ×102 m .
2 a1 (3.0 m ⋅s
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