
 
 

  
 

 
 

  
 

    
    

 

 
  

  

 
   

  
     
 

 
 

 

 
    

  

 
        

 
             

       
 

4.3 Velocity 

When describing the motion of objects, words like “speed” and “velocity” are used in 
natural language; however when introducing a mathematical description of motion, we 
need to define these terms precisely. Our procedure will be to define average quantities 
for finite intervals of time and then examine what happens in the limit as the time interval 
becomes infinitesimally small. This will lead us to the mathematical concept that velocity 
at an instant in time is the derivative of the position with respect to time. 

4.3.1 Average Velocity 

The x -component of the average velocity, v , for a time interval Δt is definedx,ave 

to be the displacement Δx divided by the time interval Δt , 

Δx 
v ≡ . (4.3.1)x,ave Δt 

Because we are describing one-dimensional motion we shall drop the subscript x and 
denote 

v = v . (4.3.2)ave x,ave 

When we introduce two-dimensional motion we will distinguish the components of the 
velocity by subscripts. The average velocity vector is then 

v ≡ Δx î = v î . (4.3.3)ave ave Δt 

The SI units for average velocity are meters per second ⎡m s⋅ −1 ⎤⎦ . The average velocity is ⎣ 
not necessarily equal to the distance in the time interval Δt traveled divided by the time 
interval Δt . For example, during a time interval, an object moves in the positive x -
direction and then returns to its starting position, the displacement of the object is zero, 
but the distance traveled is non-zero. 
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4.3.3 Instantaneous Velocity 

Consider a body moving in one direction. During the time interval [ , t t + Δt] , the average 
velocity corresponds to the slope of the line connecting the points ( , t x t ( )) and 
(t + Δt, x(t + Δt)) . The slope, the rise over the run, is the change in position divided by 
the change in time, and is given by 

rise Δx x(t + Δt) − x(t)
v ≡ = = . (4.3.4)ave run Δt Δt 

t , the slope of the lines connecting the points (t, x(t)) and (t + Δt, x(t + Δt)) , 
approach slope of the tangent line to the graph of the function x(t) at the time t (Figure 
4.4). 

As Δ → 0 

t t + t 

x(t) 

x(t + t) 

t 

x 

tangent line 
at time t 

x(t) 

Figure 4.4 Plot of position vs. time showing the tangent line at time t . 

The limiting value of this sequence is defined to be the x -component of the 
instantaneous velocity at the time t . 

The x -component of instantaneous velocity at time t is given by the 
slope of the tangent line to the graph of the position function at time t : 

Δx x(t + Δt) − x(t) dx 
v(t) ≡ lim vave = lim = lim ≡ . (4.3.5)

Δt→0 Δt→0 Δt Δt→0 Δt dt 

The instantaneous velocity vector is then 

 v(t) = v(t) î . (4.3.6) 

The component of the velocity, v(t) , can be positive, zero, or negative, depending on 
whether the object is travelling in the positive x -direction, instantaneously at rest, or the 
negative x -direction. 
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Example 4.1 Determining Velocity from Position 

Consider an object that is moving along the x -coordinate axis with the position function 
given by 

x(t) = x0 + 
1 

bt2 (4.3.7)
2 

where x0 is the initial position of the object at t = 0 . We can explicitly calculate the x -
component of instantaneous velocity from Equation (4.3.5) by first calculating the 
displacement in the x -direction, Δx = x t ( + Δt) − x t ( ) . We need to calculate the position 
at time t + Δt , 

x(t + Δt) = x0 + 
1 

b(t + Δt)2 = x0 + 
1 

b(t2 + 2tΔt + Δt2 ) . (4.3.8)
2 2 

Then the x -component of instantaneous velocity is 

⎛ 1 ⎞ ⎛ 1 ⎞ 
x0 + b(t2 + 2t Δt + Δt2 ) x0 + bt2 

x(t + Δt) − x(t) ⎝⎜ 2 ⎠⎟ 
−
⎝⎜ 2 ⎠⎟ 

v(t) = lim = lim . (4.3.9)
Δt→0 Δt Δt→0 Δt 

This expression reduces to 
⎛ 1 ⎞ 

v(t) = lim bt + bΔt (4.3.10)
Δt→0 ⎝⎜ 2 ⎠⎟ 

. 

The first term is independent of the interval Δt and the second term vanishes because in 
the limit as Δ → 0 x -component of t , the term (1/ 2)bΔt → 0 is zero. Therefore the 
instantaneous velocity at time t is 

v(t) = bt . (4.3.11) 

In Figure 4.5 we plot the instantaneous velocity, v(t) , as a function of time t . 

t 

v(t) v(t) = bt 

Figure 4.5 Plot of instantaneous velocity instantaneous velocity as a function of time. 
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Example 4.2 Mean Value Theorem 

Consider an object that is moving along the x -coordinate axis with the position function 
given by 

x(t) = x0 + v0t + 
1 
2 

bt2 . (4.3.12) 

The graph of x(t) vs. t is shown in Figure 4.6. 

x(t) 

x0 

slope = v ave 

slope = v(t1) 

t 

x(t) = x0 + v0t + 
1 
2 

bt2 

ti t f 

x(t f ) 

x(ti ) 

t1 = (t f ti ) / 2 

Figure 4.6 Intermediate Value Theorem 

The x -component of the instantaneous velocity is 

dx(t)
v(t) = = v0 + bt . (4.3.13)

dt 

For the time interval [ti ,t f ] , the displacement of the object is 

x(t f ) − x(ti ) = Δx = v0(t f − ti ) + 
1 

b(t f 
2 − ti 

2 ) = v0(t f − ti ) + 
1 

b(t f − ti )(t f + ti ) . (4.3.14)
2 2 

Recall that the x -component of the average velocity is defined by the condition that 

Δx = vave (t f − ti ) . (4.3.15) 

We can determine the average velocity by substituting Eq. (4.3.15) into Eq. (4.3.14) 
yielding 
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1 v + ) . (4.3.16)ave = v0 b(t f + ti2 

The Mean Value Theorem from calculus states that there exists an instant in time t1 , with 
ti < t1 < t f , such that the x -component of the instantaneously velocity, v(t1) , satisfies 

Δx = v(t1)(t f − ti ) . (4.3.17) 

Geometrically this means that the slope of the straight line (blue line in Figure 4.6) 
connecting the points (ti , x(ti )) to (t f ,x(t f )) is equal to the slope of the tangent line (red 

line in Figure 4.6) to the graph of x(t) vs. t at the point (t1, x(t1)) (Figure 4.6), 

v(t1) = vave . (4.3.18) 
We know from Eq. (4.3.13) that 

v(t1) = v0 + bt1 . (4.3.19) 

We can solve for the time t1 by substituting Eqs. (4.3.19) and (4.3.16) into Eq. (4.3.18) 
yielding 

t1 = (t f + ti ) / 2 (4.3.20) 

This intermediate value v(t1) is also equal to one-half the sum of the initial velocity and 
final velocity 

v(ti ) + v(t f ) (v0 + bti ) + (v0 + bt f ) 1 v(t1) = = = v0 + b(t f + ti ) = v0 + bt1 . (4.3.21)
2 2 2 

For any time interval, the quantity (v(ti ) + v(t f )) / 2 , is the arithmetic mean of the initial 
velocity and the final velocity (but unfortunately is also sometimes referred to as the 
average velocity). The average velocity, which we defined as v ) / Δt , and the ave = (x f − xi 

arithmetic mean, (v(ti ) + v(t f )) / 2 , are only equal in the special case when the velocity is 
a linear function in the variable t as in this example, (Eq. (4.3.13)). We shall only use the 
term average velocity to mean displacement divided by the time interval. 
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