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Chapter 3 Vectors 

Philosophy is written in this grand book, the universe which stands 
continually open to our gaze. But the book cannot be understood unless 
one first learns to comprehend the language and read the letters in which 
it is composed. It is written in the language of mathematics, and its 
characters are triangles, circles and other geometric figures without 
which it is humanly impossible to understand a single word of it; without 
these, one wanders about in a dark labyrinth.1 

Galileo Galilee 
3.1 Vector Analysis 

3.1.1 Introduction to Vectors 

Certain physical quantities such as mass or the absolute temperature at some point in 
space only have magnitude. A single number can represent each of these quantities, with 
appropriate units, which are called scalar quantities. There are, however, other physical 
quantities that have both magnitude and direction. Force is an example of a quantity that 
has both direction and magnitude (strength). Three numbers are needed to represent the 
magnitude and direction of a vector quantity in a three dimensional space. These 
quantities are called vector quantities. Vector quantities also satisfy two distinct 
operations, vector addition and multiplication of a vector by a scalar. We can add two 
forces together and the sum of the forces must satisfy the rule for vector addition. We can 
multiply a force by a scalar thus increasing or decreasing its strength. Position, 
displacement, velocity, acceleration, force, and momentum are all physical quantities that 
can be represented mathematically by vectors. The set of vectors and the two operations 
form what is called a vector space. There are many types of vector spaces but we shall 
restrict our attention to the very familiar type of vector space in three dimensions that 
most students have encountered in their mathematical courses. We shall begin our 
discussion by defining what we mean by a vector in three dimensional space, and the 
rules for the operations of vector addition and multiplication of a vector by a scalar. 

3.1.2 Properties of Vectors 

A vector is a quantity that has both direction and magnitude. Let a vector be denoted by    
the symbol A . The magnitude of A is | A |≡ A . We can represent vectors as geometric 
objects using arrows. The length of the arrow corresponds to the magnitude of the vector. 
The arrow points in the direction of the vector (Figure 3.1). 

1 Galileo Galilei, The Assayer, tr. Stillman Drake (1957), Discoveries and Opinions of 
Galileo pp. 237-8. 
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Figure 3.1 Vectors as arrows. 

There are two defining operations for vectors: 

(1) Vector Addition: 
     

Vectors can be added. Let A and B be two vectors. We define a new vector, C = A + B ,   
the “vector addition” of A and B , by a geometric construction. Draw the arrow that    
represents A . Place the tail of the arrow that represents B at the tip of the arrow for A   

as shown in Figure 3.2a. The arrow that starts at the tail of A  
A + 

 and goes to the tip of B is 
defined to be the “vector addition” C =
 B . There is an equivalent construction for the 
 
law of vector addition. The vectors A and B can be drawn with their tails at the same 
point. The two vectors form the sides of a parallelogram. The diagonal of the    
parallelogram corresponds to the vector C = A + B , as shown in Figure 3.2b. 

C = A + B 
B 

A 

(a) head to tail 

A 

B
C = A + B 

(b) parallelogram 

Figure 3.2a Figure 3.2b 

Vector addition satisfies the following four properties: 

(i) Commutativity: 

The order of adding vectors does not matter; 
 
A
+
 
 
B
=
 
 
B
+
 
 
A
.
 (3.1.1)
 

Our geometric definition for vector addition satisfies the commutative property (3.1.1). 

We can understand this geometrically because in the head to tail representation for the
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addition of vectors, it doesn’t matter which vector you begin with, the sum is the same 
vector, as seen in Figure 3.3. 

C = B + A C = A + B B 

A 

B 
A 

Figure 3.3 Commutative property of vector addition. 
(ii) Associativity:  

When adding three vectors, it doesn’t matter which two you start with 


  

A (+
 
 
C =
 



 
A + B) +
 B + C) .
(
 (3.1.2)
 

 
B
+
 
 
C


 
A


 
A


 
B
+
 
 
C
In Figure 3.4a, we add ( ) +
 , and use commutativity to get + (
 ) . In figure, 

 
A
+
 
 
B
) +
 

 
C
we add ( to arrive at the same vector as in Figure 3.4a. 

B + C 

CA 
A + (B + C) (A + B) + C 

B 
A + BB
 

AC 

Figure 3.4a Associative law. 

(iii) Identity Element for Vector Addition: 

 
There is a unique vector, 0 , that acts as an identity element for vector addition. For all  
vectors A ,      

A + 0 = 0 + A = A . (3.1.3) 

(iv) Inverse Element for Vector Addition: 

  
For every vector A , there is a unique inverse vector −A such that 
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A
+ (−
 

 
A
) =
 


0
. (3.1.4)
 

    
The vector −A has the same magnitude as A , | A | | = −A |= A , but they point in opposite 
directions (Figure 3.5). 

A A 

Figure 3.5 Additive inverse 

(2) Scalar Multiplication of Vectors: 
 

Vectors can be multiplied by real numbers. Let A be a vector. Let c be a real positive  
number. Then the multiplication of A by c is a new vector, which we denote by the    
symbol c A . The magnitude of c A is c times the magnitude of A (Figure 3.6a), 

  
cA = c A . (3.1.5) 

  
Let c > 0 , then the direction of c A is the same as the direction of A . However, the 

  
direction of −c A is opposite of A (Figure 3.6). 

A c Ac A 

 
Figure 3.6 Multiplication of vector A by c > 0 , and −c < 0 . 

Scalar multiplication of vectors satisfies the following properties: 

(i) Associative Law for Scalar Multiplication: 

The order of multiplying numbers is doesn’t matter. Let b and c be real numbers. Then 

    
( A) = bc )A = (cb A) = c b A)b c ( ( . (3.1.6) 

(ii) Distributive Law for Vector Addition: 

Vectors satisfy a distributive law for vector addition. Let c be a real number. Then 
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c( 
 
A
+
 
 
B
) = c 

 
A
+ c 

 
B
.
 (3.1.7)
 

Figure 3.7 illustrates this property. 

c(A + B) c A + cB 

C = A + B 

cB c A 
B 

A 

Figure 3.7 Distributive Law for vector addition. 

(iii) Distributive Law for Scalar Addition: 

Vectors also satisfy a distributive law for scalar addition. Let b and c be real numbers. 
Then 

(b + c) 
 
A
= b 

 
A
+ c 

 
A
 (3.1.8)
 

Our geometric definition of vector addition and scalar multiplication satisfies this 
condition as seen in Figure 3.8. 

A bA 

c A 

(b + c) A bA + c A 

Figure 3.8 Distributive law for scalar multiplication. 

(iv) Identity Element for Scalar Multiplication: 

The number 1 acts as an identity element for multiplication, 

  
1 A = A . (3.1.9) 
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Unit vector: 

Dividing a vector by its magnitude results in a vector of unit length which we denote with 
a caret symbol 

Â = 

 
A

A
 

. (3.1.10)
 

 ˆNote that A = A / A = 1 . 

3.2 Coordinate Systems 

Physics involve the study of phenomena that we observe in the world. In order to connect 
the phenomena to mathematics we begin by introducing the concept of a coordinate 
system. A coordinate system consists of four basic elements: 

(1) Choice of origin 

(2) Choice of axes 

(3) Choice of positive direction for each axis 

(4) Choice of unit vectors at every point in space 

There are three commonly used coordinate systems: Cartesian, cylindrical and spherical. 
In this chapter we will describe a Cartesian coordinate system and a cylindrical 
coordinate system. 

3.2.1 Cartesian Coordinate System 

Cartesian coordinates consist of a set of mutually perpendicular axes, which intersect at a 
common point, the origin O . We live in a three-dimensional spatial world; for that 
reason, the most common system we will use has three axes. 

(1) Choice of Origin: Choose an origin O at any point that is most convenient. 

(2) Choice of Axes: The simplest set of axes is known as the Cartesian axes, x -axis, y -
axis, and the z -axis, that are at right angles with respect to each other. Then each point 
P in space can be assigned a triplet of values (xP , yP , zP ) , the Cartesian coordinates of 
the point P . The ranges of these values are: −∞ < xP < +∞ , 
−∞ < yP < +∞ , −∞ < zP < +∞ . 

(3) Choice of Positive Direction: Our third choice is an assignment of positive direction 
for each coordinate axis. We shall denote this choice by the symbol + along the positive 
axis. In physics problems we are free to choose our axes and positive directions any way 
that we decide best fits a given problem. Problems that are very difficult using the 
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conventional choices may turn out to be much easier to solve by making a thoughtful 
choice of axes. 

(4) Choice of Unit Vectors: We now associate to each point P in space, a set of three 
ˆ ˆ ˆunit vectors (îP , ĵP ,k̂ P ) . A unit vector has magnitude one: = 1 , and = 1 , = 1 .iP jP k P 

We assign the direction of îP to point in the direction of the increasing x -coordinate at 

the point P . We define the directions for ĵP and k̂ P in the direction of the increasing 
y -coordinate and z -coordinate respectively, (Figure 3.10). If we choose a different point 
S , and define a similar set of unit vectors (îS , ĵS , k̂ S ) , the unit vectors at S and P 

satisfy the equalities 
îS = îP , ĵS = ĵP , and k̂ S = k̂ P , (3.2.1) 

because vectors are equal if they have the same direction and magnitude regardless of 
where they are located in space. 

Figure 3.10 Choice of unit vectors at points P and S . 

A Cartesian coordinate system is the only coordinate system in which Eq. (3.2.1) holds 
for all pair of points. We therefore drop the reference to the point P and use (î, ĵ, k̂) to 
represent the unit vectors in a Cartesian coordinate system (Figure 3.11). 

+z 

+ y 

+x 
xP 

yP 

zP . 
P 

0 

k̂ 
ĵ

î 

Figure 3.11 Unit vectors in a Cartesian coordinate system 
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3.2.2 Cylindrical Coordinate System 

Many physical objects demonstrate some type of symmetry. For example if you rotate a 
uniform cylinder about the longitudinal axis (symmetry axis), the cylinder appears 
unchanged. The operation of rotating the cylinder is called a symmetry operation, and the 
object undergoing the operation, the cylinder, is exactly the same as before the operation 
was performed. This symmetry property of cylinders suggests a coordinate system, called 
a cylindrical coordinate system, that makes the symmetrical property under rotations 
transparent. 

First choose an origin O and axis through O , which we call the z -axis. The 
cylindrical coordinates for a point P are the three numbers (r,θ , z) (Figure 3.12). The 
number z represents the familiar coordinate of the point P along the z -axis. The 
nonnegative number r represents the distance from the z -axis to the point P . The points 
in space corresponding to a constant positive value of r lie on a circular cylinder. The 
locus of points corresponding to r = 0 is the z -axis. In the plane z = 0 , define a 
reference ray through O , which we shall refer to as the positive x -axis. Draw a line 
through the point P that is parallel to the z -axis. Let D denote the point of intersection 
between that line PD and the plane z = 0 . Draw a ray OD from the origin to the point 
D . Let θ denote the directed angle from the reference ray to the ray OD . The angle θ is 
positive when measured counterclockwise and negative when measured clockwise. 

r 

(r, , z)
. 

z 

y 

r 

r 

P 

O 

D 
. 

x 

+x 

+ y 

+z 

(r, ,0) 

Figure 3.12 Cylindrical Coordinates 

The coordinates (r,θ) are called polar coordinates. The coordinate transformations 
between (r,θ) and the Cartesian coordinates (x, y) are given by 
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x = r cosθ , (3.2.2) 
y = r sinθ . (3.2.3) 

Conversely, if we are given the Cartesian coordinates (x, y) , the coordinates (r,θ) can 
be determined from the coordinate transformations 

2 )1 2 r = +(x2 + y , (3.2.4) 
θ = tan−1( y / x) . (3.2.5) 

We choose a set of unit vectors (r̂P ,θ̂P ,k̂ P ) at the point P as follows. We choose k̂ P to 
point in the direction of increasing z . We choose r̂P to point in the direction of 

ˆincreasing r , directed radially away from the z -axis. We choose θP to point in the 
direction of increasing θ . This unit vector points in the counterclockwise direction, 
tangent to the circle (Figure 3.13a). One crucial difference between cylindrical 
coordinates and Cartesian coordinates involves the choice of unit vectors. Suppose we 

ˆ ˆconsider a different point S in the plane. The unit vectors (r̂S ,θS ,k S ) at the point S are 

also shown in Figure 3.13. Note that r̂P ≠ r̂S and θ̂P ≠ θ̂S because their direction differ. 
We shall drop the subscripts denoting the points at which the unit vectors are defined at 
and simple refer to the set of unit vectors at a point as (r̂,θ̂,k̂) , with the understanding 

ˆthat the directions of the set (r̂,θ) depend on the location of the point in question. 

. 
P 

O 

+x 

+ y 

+z 

ˆ 
P 

r̂
P 

k̂ 
P. r̂

S 

S 

k̂
S 

ˆ 
S 

Figure 3.13a Unit vectors at two different points in cylindrical coordinates. 
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r̂ˆ ĵ 
î 

+ x 

+ y 

Figure 3.13b Unit vectors in polar coordinates and Cartesian coordinates. 

The unit vectors (r̂,θ̂) at the point P also are related to the Cartesian unit vectors ( î, ĵ ) 
by the transformations 

r̂ = cosθ î + sinθ ĵ , (3.2.6) 
θ̂ = −sinθ î + cosθ ĵ . (3.2.7) 

Similarly the inverse transformations are given by 

î = cosθ r̂ − sinθ θ̂ , (3.2.8) 
ĵ = sinθ r̂ + cosθ θ̂ . (3.2.9) 

A cylindrical coordinate system is also a useful choice to describe the motion of an object 
moving in a circle about a central point. Consider a vertical axis passing perpendicular to 
the plane of motion passing through that central point. Then any rotation about this 
vertical axis leaves circles unchanged. 

3.3 Vectors 

3.3.1 The Use of Vectors in Physics 

From the last section we have three important ideas about vectors, (1) vectors can exist at 
any point P in space, (2) vectors have direction and magnitude, and (3) any two vectors 
that have the same direction and magnitude are equal no matter where in space they are 
located. When we apply vectors to physical quantities it’s nice to keep in the back of our 
minds all these formal properties. However from the physicist’s point of view, we are 
interested in representing physical quantities such as displacement, velocity, acceleration, 
force, impulse, and momentum as vectors. We can’t add force to velocity or subtract 
momentum from force. We must always understand the physical context for the vector 
quantity. Thus, instead of approaching vectors as formal mathematical objects we shall 
instead consider the following essential properties that enable us to represent physical 
quantities as vectors. 
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3.3.2 Vectors in Cartesian Coordinates 

(1) Vector Decomposition: Choose a coordinate system with an origin, axes, and unit 
vectors. We can decompose a vector into component vectors along each coordinate axis 
(Figure 3.14). 

+z 

+ y 
+x 

. 
0 

A A z 

A y 

A x 

Figure 3.14 Component vectors in Cartesian coordinates. 

 
A vector A at P can be decomposed into the vector sum, 

 
A
=
 
 
A
 +
 

 
A
 +
 

 
A
 ,
 (3.3.1)
x y z 

 
where A is the x -component vector pointing in the positive or negative x -direction, x   
A y is the y -component vector pointing in the positive or negative y -direction, and A z 

is the z -component vector pointing in the positive or negative z -direction. 

(2) Vector Components: Once we have defined unit vectors (î, ĵ, k̂) , we then define the 
components of a vector. Recall our vector decomposition, 

 
A
=
 
 
A
 +
 

 
A
 +
 

 
A
 . We define x y z 

 
the x-component vector, Ax , as 

 ˆAx = Ax i . (3.3.2) 

In this expression the term Ax , (without the arrow above) is called the x -component of 
 

the vector A . The x -component Ax can be positive, zero, or negative. It is not the 
 

2 1/ 2 magnitude of Ax which is given by (Ax ) . The x -component Ax is a scalar quantity 
 

and the x -component vector, Ax is a vector. In a similar fashion we define the y -
 

component, Ay , and the z -component, Az , of the vector A according to 

 ˆ ˆA = A j, A = A k . (3.3.3)y y z z 
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A vector A is represented by its three components ( A , A , A ) . Thus we need three x y z 

 
numbers to describe a vector in three-dimensional space. We write the vector A as 

 ˆ ˆ ˆA = A i + A j + A k . (3.3.4)x y z 

 
(3) Magnitude: Using the Pythagorean theorem, the magnitude of A is, 

2 2 2A = Ax + Ay + Az . (3.3.5) 

 
(4) Direction: Let’s consider a vector A = (Ax , Ay ,0) . Because the z -component is zero, 

  
the vector A lies in the x y plane. Let θ denote the angle that the vector A- makes in 
the counterclockwise direction with the positive x -axis (Figure 3.15). 

+y 
ĵ 

îA 
A y

P A x 
+x 

Figure 3.15 Components of a vector in the xy -plane. 

Then the x -component and y -component are 

Ax = Acos(θ), Ay = Asin(θ) . (3.3.6) 

We now write a vector in the xy -plane as 

 ˆ ˆ= Acos( ) θ i + Asin( ) A θ j (3.3.7) 

Once the components of a vector are known, the tangent of the angle θ can be 
determined by 

A Asin(θ)y = = tan(θ) , (3.3.8)
Ax Acos(θ) 

and hence the angle θ is given by 
⎛ A ⎞

θ = tan −1 ⎜ 
y 
⎟ . (3.3.9)

⎝ Ax ⎠ 
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Clearly, the direction of the vector depends on the sign of Ax and Ay . For example, if 

both Ax > 0 and Ay > 0 , then 0 < θ < π / 2 . If Ax < 0 and Ay > 0 then π / 2 < θ < π . 

If A < 0 and A < 0 then π < θ < 3π / 2 . If A > 0 and A < 0 , then 3π / 2 < θ < 2π . x y x y

Note that tan(θ ) is a double valued function because 

− A A A − A y y y y= , and = . (3.3.10)
− A A − A A x x x x 

  ˆ ˆ ˆ ˆ(5) Unit Vectors: Unit vector in the direction of A : Let A = A i + A j + A k . Let Ax y z 
 

denote a unit vector in the direction of A . Then 

Â = 
A
 = 

A x 

A ( A x 

  



î A+ y 

2 +

ĵ +

2 +


Az k̂ 
2 )1/ 2 .
 (3.3.11)


Ay Az 

(6) Vector Addition: Let A and B be two vectors in the x-y plane. Let θA and θB   
denote the angles that the vectors A and B make (in the counterclockwise direction) 
with the positive x -axis. Then 

 
A = Acos(θ A ) î + Asin(θ A ) ĵ , (3.3.12) 
 
B = Bcos(θB ) î + Bsin(θB ) ĵ (3.3.13) 

   
In Figure 3.16, the vector addition C = A + B is shown. Let θC denote the angle that the 

 
vector C makes with the positive x-axis. 

C = A + B 

A 

B 

A x 

A y 

B x 

B y 

C x = A x + B x 

C y = A y + B y 

+x 

+ y 

A 

B 
C 

Figure 3.16 Vector addition using components. 

 
From Figure 3.16, the components of C are 

C = A + B , C = A + B . (3.3.14)x x x y y y 
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In terms of magnitudes and angles, we have 

Cx = C cos(θC ) = Acos(θ A )+ Bcos(θB ) (3.3.15)
Cy = C sin(θC ) = Asin(θ A ) + Bsin(θB ). 

 
We can write the vector C as 

 
C = ( A + B ) î + ( A + B ) ĵ = C cos(θC ) î + C sin(θC ) ĵ , (3.3.16)x x y y 

Example 3.1 Vector Addition 

   ˆ ˆ ˆ ˆ ˆ ˆGiven two vectors, A = 2 i + −3 j + 7 k and B = 5i + j + 2k , find: (a) ; (b) ; (c) A B 
     
A + B ; (d) A − B ; (e) a unit vector Â pointing in the direction of A ; (f) a unit vector B̂ 
pointing in the direction of B . 

Solution: 
  

(a) A = (22 + (−3)2 + 72 )1/2 
= 62 = 7.87 . (b) B = (52 +12 + 22 )1/2 

= 30 = 5.48 . 

 
A +
 

 
B = ( Ax + B
 ) î + ( A + B ) ĵ + ( A + B ) k̂y y z zx 

(c) = (2 + 5) ̂i + (−3+1) ̂j + (7 + 2) k̂
= 7 î − 2 ĵ + 9 k̂. 

  
A − B = ( A − B ) î + ( A − B ) ĵ + ( A − B ) k̂x x y y z z 

(d) = (2 − 5) ̂i + (−3−1) ̂j + (7 − 2) k̂
= −3 î − 4 ĵ + 5 k̂. 

  
(e) A unit vector Â in the direction of A can be found by dividing the vector A by the  
magnitude of A . Therefore 

  
Â = A / A = (2 î + −3 ĵ + 7 k̂ ) / 62 . 

  
(f) In a similar fashion, B̂ = B / B = (5î + ĵ + 2k̂ ) / 
Example 3.2 Sinking Sailboat 

30 . 
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A Coast Guard ship is located 35 km away from a checkpoint in a direction 52 north of 
west. A distressed sailboat located in still water 24 km from the same checkpoint in a 
direction 18 south of east is about to sink. Draw a diagram indicating the position of 
both ships. In what direction and how far must the Coast Guard ship travel to reach the 
sailboat? 

Solution: The diagram of the set-up is Figure 3.17. 

52 
18 

35 km 

24 km 
sailboat 

N 

W E 

S 

checkpoint 

Coast Guard 
ship 

Figure 3.17 Example 3.2 

NCoast Guard 
ship 

sailboat 

W E 

1 

î 
ĵ 

2 

r1 

r2 

+ x 

+ y 

S 

Figure 3.18 Coordinate system for sailboat and ship 

Choose the checkpoint as the origin of a Cartesian coordinate system with the positive x -
axis in the East direction and the positive y –axis in the North direction. Choose the 
corresponding unit vectors î and ĵ as shown in Figure 3.18. The Coast Guard ship is 
then a distance r1 = 35 km at an angle θ1 = 180 − 52 = 128 from the positive x -axis, 

and the sailboat is at a distance r2 = 24 km at an angle θ2 = −18 from the positive x -
axis. The position of the Coast Guard ship is then 
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21 

S 

 r1 = r1(cosθ1 î + sinθ1 ĵ) 

r  = −21.5km ̂i + 27.6km ̂j 

and the position of the sailboat is 

 r2 = r2(cosθ2 î + sinθ2 ĵ) 

r 2 = 22.8km ̂i − 7.4km ĵ. 

NCoast Guard 
ship ĵ 

r1 
r2 r1 

W E 

r2 sailboat 

î
 

Figure 3.19 Relative position vector from ship to sailboat
 

The relative position vector from the Coast Guard ship to the sailboat is (Figure 3.19)
 

r2 

 r1 = (22.8km ̂i − 7.4km ĵ) − (−21.5km ̂i + 27.6km ̂j)−



 r2 

 r1 = 44.4km ̂i − 35.0km ̂j.−


r2 1r

The distance between the ship and the sailboat is 

 − 
 = ((44.4km)2 + (−35.0km)2 )1/2 = 56.5km 

The rescue ship’s heading would be the inverse tangent of the ratio of the y - and x -
components of the relative position vector, 

= tan−1(−35.0km/44.4km) = −38.3 .θ21 

or 38.3 South of East. 

Example 3.3 Vector Addition 
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B = 2 ATwo vectors A and B , such that , have a resultant 

 
C
=
 
 
A
+
 
 
B
 of magnitude 

  
26.5 . The vector C makes an angle θC = 41 with respect to vector A . Find the 

  
magnitude of each vector and the angle between vectors A and B . 

 
Solution: We begin by making a sketch of the three vectors, choosing A to point in the 
positive x -direction (Figure 3.20). 

C = A + B 
B 

ĵ 
î 

�A 

C 

Figure 3.20 Choice of coordinates system for Example 3.3 

 
Denote the magnitude of C by C ≡ = (Cx )

2 + (Cy )
2 = 26.5 . The components ofC 

 
C
=
 
 
A
+
 
 
B
 are given by 

C = A + B = C cosθC = (26.5)cos(41 ) = 20 (3.3.17)x x x 

Cy = By = C sinθC = (26.5)sin(41 ) = 17.4 . (3.3.18) 

 
B = 2 AFrom the condition that , the square of their magnitudes satisfy 

(B )2 + (B )2 = 4( A )2 . (3.3.19)x y x 

Using Eqs. (3.3.17) and (3.3.18), Eq. (3.3.19)becomes 

)2 + (C y )2 = 4(
Ax )2(C
 x −
Ax

)2 − 2C x + (
Ax )2 + (C y )2 = 4(
Ax )2 .
(C
 x Ax 

This is a quadratic equation 
0 = 3( A )2 + 2C A − C 2 

x x x 

which we solve for the component Ax : 
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A = 
−2C x ± (2C x )

2 + (4)(3)(C 2 ) 
= 
−2(20) ± (40))2 + (4)(3)(26.5)2 

= 10.0, x 6 6 

where we choose the positive square root because we originally chose Ax > 0 . The 
 

components of B are then given by Eqs. (3.3.17) and (3.3.18): 

B = C − A = 20.0 −10.0 = 10.0 x x x 

By = 17.4 . 

 
The magnitude of = (Bx )

2 + (By )
2 = 20.0 which is equal to two times the magnitude B 

   
Aof = 10.0 . The angle between A and B is given by 

 
θ = sin−1(By / B ) = sin−1(17.4 / 20.0 N) = 60 . 

Example 3.4 Vector Description of a Point on a Line 

. 
. 

P1 

P2 

. 
A 

a 
ad 

î 
ĵ 

+ x 

+ y 

Figure 3.21 Example 3.4 

P Pconnecting that is located a distance from the point a 1

P1

1

 
are separated by distance d . Find a vector A from the origin to the point on the line 
Consider two points, with coordinates (x1, y1) and P2 with coordinates (x1, y1) , that 

and P2 (Figure 3.21). 

r1 

ĵ Pbe the position vector of 1

r
1
r

2

1

rr
P2

  = x1 

− 
 

1 2 be the vector from P P

P 1 2 

î + y1 = x2 ̂i + y2 ĵ the position 
Pvector of 2

Solution: Let and r1 r2 

. Let 

r1 2 
rr2 

(Figure 3.22a). The unit vector to 

r̂21 = (
 −
 ) / d ,pointing from is given by ) /
 −
 = (
 −
 where to 

)2 )1/2 d = ((x2 − x1)2 + ( y2 − y1

18



 

    
          

 
               

           
 

    

 

 
 

   
 

           
          

 

 
  

 
               

   
 

   
 

 
 

     
 

P1 . 
. 

A 

P1r1 r2 

A 

r1 

. s = a(r1 . ) / d
r2 

.P2 r1 P2 
r2 r2 

Figure 3.22a: Relative position vector Figure 3.22b: Relative position vector 

 s in Figure 3.22b connects A 
r1 

 r1 
r1 

, points in the direction of r̂12 ,The vector to the point at
r2 

s
 
A

s= ar̂21and has length a . Therefore = a( −
 ) / d . The vector . Therefore +
=
 


 
 

 
 r1 −


 r2 ) / d = (1− a / d)r1 + (a / d)
 r2A =
 

A = (1− a / d)(x1
 

−
 − a(r1 s = r1

î + y1 ĵ) + (a / d)(x2 î + y2 ĵ) 

⎛ a(x2 − x1) ⎞ ⎛ a( y2 − y1) ⎞ 
+ 

⎝⎜ ((x2 − x1)2 + ( y2 − y1)2 )1/2 ⎠⎟ ̂
i + 

⎝⎜ 
y1 ((x2 − x1)2 + ( y2 − y1)2 )1/2 ⎠⎟ ̂

j. 

 
A =
 +
x1 

3.3.2 Transformation of Vectors in Rotated Coordinate Systems 

Consider two Cartesian coordinate systems S and S ′ such that the (x′, y′) coordinate 
axes in S ′ are rotated by an angle θ with respect to the (x, y) coordinate axes in S , 
(Figure 3.23). 

ĵĵ îî ĵ+ y 
rotation + y ' 
by angle î 

+x ' 
+ x 

Figure 3.23 Rotated coordinate systems
 

The components of the unit vector î′ in the î and ĵ direction are given by 


î′ î′ sinθ = sinθ . Therefore i′ = cosθ = cosθ and i′ = y 

î′ = ix ′ î + i′ y ĵ = îcosθ + ̂jsinθ . (3.3.20) 

x 
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A similar argument holds for the components of the unit vector ĵ′ . The components of ĵ′ 

in the î and ĵ direction are given by jx ′ = − ĵ′ ĵ′sinθ = −sinθ and j′ y = cosθ = cosθ . 

Therefore 
ĵ′ = jx ′ î + j′ y ĵ = ĵcosθ − ̂isinθ . (3.3.21) 

Conversely, from Figure 3.23 and similar vector decomposition arguments, the 
components of î and ĵ in S ′ are given by 

î = î′cosθ − ̂j′sinθ , (3.3.22) 
ĵ = î′sinθ + ̂j′cosθ . (3.3.23) 

Consider a fixed vector r = x î + yĵ with components (x, y) in coordinate system S . In 
coordinate system S ′ , the vector is given by r  = x′ î′ + y′̂j′ , where (x′, y′) are the 
components in S ′ , (Figure 3.24). 

x ' y ' 

î
ĵî 

ĵ 

rotation 
by angle 

x 

y 
r 

r 

Figure 3.24 Transformation of vector components 

Using the Eqs. (3.3.20) and (3.3.21), we have that 

 r = x î + yĵ = x( î′cosθ − ̂j′sinθ ) + y( ĵ′cosθ + ̂i′sinθ ) 
(3.3.24) 

r  = (x cosθ + ysinθ )î′ + (xsinθ − ycosθ ) ĵ′. 

Therefore the components of the vector transform according to 

x′ = xcosθ + ysinθ , (3.3.25) 
y′ = xsinθ − ycosθ . (3.3.26) 

We now consider an alternate approach to understanding the transformation laws for the 
components of the position vector of a fixed point in space. In coordinate system S , 

 rsuppose the position vector r has length r = and makes an angle φ with respect to 
the positive x -axis (Figure 3.25). 
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x ' y ' 

î
ĵî 

ĵ 

rotation 
by angle 

x 

y 
r 

r 

Figure 3.25 Transformation of vector components of the position vector 

r in S are given by Then the components of 

x = r cosφ , (3.3.27) 
y = r sinφ . (3.3.28) 

In coordinate system S ′ , the components of  are given by r 

x′ = r cos(φ −θ ) , (3.3.29) 
y′ = r sin(φ −θ ) . (3.3.30) 

Apply the addition of angle trigonometric identities to Eqs. (3.3.29) and (3.3.30) yielding 

x′ = r cos(φ −θ ) = r cosφ cosθ + r sinφ sinθ = xcosθ + ysinθ , 
y′ = r sin(φ −θ ) = r sinφ cosθ − r cosφ sinθ = ycosθ − xsinθ , 

(3.3.31) 
(3.3.32) 

in agreement with Eqs. (3.3.25) and (3.3.26). 

Example 3.5 Vector Decomposition in Rotated Coordinate Systems 
 

With respect to a given Cartesian coordinate system S , a vector A has components
 
A = 5 , A = −3 , A = 0 . Consider a second coordinate system S ′ such that the (x′, y′)
x y z 

coordinate axes in S ′ are rotated by an angle θ = 60 with respect to the (x, y) 
coordinate axes in S , (Figure 3.26). (a) What are the components A and Ay ' of vector x '  
A in coordinate system S ′ ? (b) Calculate the magnitude of the vector using the ( Ax , Ay ) 

components and using the ( A , A ) components. Does your result agree with what you x ' y ' 

expect? 
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î 
ĵ 

�A 

A x 

A y 

ĵ î 

rotation 
= 60 by angle 

= 60 
�A 

Figure 3.26 Example 3.4 
 

Solution: a) We begin by considering the vector decomposition of A with respect to the 
coordinate system S ,  

A = Ax ̂i + Ay ̂j . (3.3.33) 

Now we can use our results for the transformation of unit vectors î and ĵ in terms of î′  
and ĵ′ , (Eqs. (3.3.22) and (3.3.23)) in order decompose the vector A in coordinate 
system S ′  

A = A î + A ĵ = A (cosθ î′ − sinθ ĵ′) + A (sinθ î′ + cosθ ĵ′)x y x y 

= ( Ax cosθ + Ay sinθ )î′ + (− Ax sinθ + Ay cosθ ) ĵ′ (3.3.34) 

= Ax′ ̂i + Ay′ ̂j, 
where 

A = A cosθ + A sinθ (3.3.35)x ′ x y 

Ay′ = − Ax sinθ + Ay cosθ . (3.3.36) 

We now use the given information that Ax = 5 , Ay = −3 , and θ = 60 to solve for the 
 

components of A in coordinate system S ′ 

= A cosθ + A sinθ = (1/ 2)(5− 3 3) ,Ax′ x y 

= − A sinθ + A cosθ = (1/ 2)(−5 3 − 3) .Ay′ x y 

b) The magnitude can be calculated in either coordinate system 

 
A = ( Ax )

2 + ( Ay )
2 = (5)2 + (−3)2 = 34 

 
A = ( Ax′ )

2 + ( Ay′ )
2 = ((1/ 2)(5− 3 3))2 

+ ((1/ 2)(−5 3 − 3) )2 
= 34 . 

 
This result agrees with what I expect because the length of vector A is independent of 
the choice of coordinate system. 

22



 

 
    

  
         
             

          
             

 
 

     
 

          
 

 
 

   
 

           
      

         
   

 
 

  
 

             
        

         
  

3.4 Vector Product (Cross Product) 
  

Let A and B be two vectors. Because any two non-parallel vectors form a plane, we   
denote the angle θ to be the angle between the vectors A and B as shown in Figure     
3.27. The magnitude of the vector product A × B of the vectors A and B is defined to   
be product of the magnitude of the vectors A and B with the sine of the angle θ 
between the two vectors, 

 
A
×
 
 
B
 =
 

 
B


 
A
 sin(θ) . (3.3.37) 

The angle θ between the vectors is limited to the values 0 ≤θ ≤π ensuring that 
sin( ) ≥ 0θ . 

Figure 3.27 Vector product geometry. 

  
The direction of the vector product is defined as follows. The vectors A and B form a 
plane. Consider the direction perpendicular to this plane. There are two possibilities: we 
shall choose one of these two (the one shown in Figure 3.27) for the direction of the   
vector product A × B using a convention that is commonly called the “right-hand rule”. 

3.4.1 Right-hand Rule for the Direction of Vector Product 

  
The first step is to redraw the vectors A and B so that the tails are touching. Then draw   
an arc starting from the vector A and finishing on the vector B . Curl your right fingers 
the same way as the arc. Your right thumb points in the direction of the vector product   
A × B (Figure 3.28). 
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C = A B 

A 

B 

Figure 3.28 Right-Hand Rule. 

  
You should remember that the direction of the vector product   A × B is perpendicular to 
the plane formed by A and B . We can give a geometric interpretation to the magnitude 
of the vector product by writing the magnitude as 

 
A
×
 
 
B
 =
 

 
A
(
 B
sinθ ) . (3.3.38) 

 

  
The vectors A and B form a parallelogram. The area of the parallelogram is equal to the 
height times the base, which is the magnitude of the vector product. In Figure 3.29, two 
different representations of the height and base of a parallelogram are illustrated. As  

B sinθdepicted in Figure 3.29(a), the term is the projection of the vector B in the 
 

direction perpendicular to the vector B . We could also write the magnitude of the vector 
product as

 
A
×
 
 
B
 =
(
  A
sinθ )  B
 .
 (3.3.39)
 

  
AThe term sinθ is the projection of the vector A in the direction perpendicular to the 

 
Bvector as shown in Figure 3.29(b). The vector product of two vectors that are parallel 

(or anti-parallel) to each other is zero because the angle between the vectors is 0 (or π ) 
and sin(0) = 0 π = 0(or sin( ) ). Geometrically, two parallel vectors do not have a unique 
component perpendicular to their common direction. 

A sin B sin B B 

A A
 

(a) (b) 
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Figure 3.29 Projection of (a) 
 
B


 
 
perpendicular to A , (b) of A perpendicular to 

 
B
 

3.4.2 Properties of the Vector Product 

(1)	 The vector product is anti-commutative because changing the order of the vectors 
changes the direction of the vector product by the right hand rule: 

    
A × B = −B × A .	 (3.3.40) 


 
(2) The vector product between a vector c A where c is a scalar and a vector 

 
B
 is 

    
c A × B = c (A × B) . (3.3.41) 

Similarly, 	    
A × c B = c (A × B) .	 (3.3.42) 

 	  
(3) The vector product between the sum of two vectors A and B with a vector C is 

	       
(A + B)×C = A ×C + B×C (3.3.43) 

Similarly, 	       
A × (B + C) = A × B + A ×C .	 (3.3.44) 

3.4.3 Vector Decomposition and the Vector Product: Cartesian Coordinates 

We first calculate that the magnitude of vector product of the unit vectors î and ĵ : 

ˆ ˆ ˆ ˆ| i × j | | || |sin( / 2) = 1,	 (3.3.45)= i j π 

ˆ ˆbecause the unit vectors have magnitude | | | | = j = 1 π / 2) = 1 . By the right hand i and sin( 
rule, the direction of î × ̂j is in the +k̂ as shown in Figure 3.30. Thus î × ̂j = k̂ . 

ĵk̂ = ̂i 

î 

ĵ 

Figure 3.30 Vector product of î × ̂j 
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We note that the same rule applies for the unit vectors in the y and z directions, 

ˆ ˆ ˆ ˆ ˆ ˆj×k = i, k × i = j . (3.3.46) 

By the anti-commutatively property (1) of the vector product, 

ĵ× ̂i = −k̂, î × k̂ = − ĵ (3.3.47) 

The vector product of the unit vector î with itself is zero because the two unit vectors are 
parallel to each other, ( sin(0) = 0 ), 

ˆ ˆ ˆ ˆ| i × i | | || | sin(0) = 0 . (3.3.48)= i i 

The vector product of the unit vector ĵ with itself and the unit vector k̂ with itself are 
also zero for the same reason, 

ˆ ˆ ˆ ˆ = 0 . (3.3.49) 

With these properties in mind we can now develop an algebraic expression for the vector 
product in terms of components. Let’s choose a Cartesian coordinate system with the 

×j j = 0, k ×k 

 
vector B pointing along the positive x-axis with positive x-component Bx . Then the 

  
vectors A and B can be written as 

 ˆ ˆ ˆA = A i + A j + A k (3.3.50)x y z 
 ˆB = Bx i , (3.3.51) 

respectively. The vector product in vector components is 

  ˆ ˆ ˆ ˆA × B = ( A i + A j + A k) × B i . (3.3.52)x y z x 

This becomes,   
A × B = (Ax î × Bx î) + (Ay ĵ× Bx î) + (A k̂ × Bx î)z 

= A B (î × ̂i) + A B ( ĵ× ̂i) + A B (k̂ × ̂i) . (3.3.53)x x y x z x 

ˆ ˆ= −A B k + A B jy x z x 

The vector component expression for the vector product easily generalizes for arbitrary 
vectors  

î + A ĵ+ k̂A =
Ax Az (3.3.54)
y 
 ˆ ˆ ˆB = B i + B j + B k , (3.3.55)x y z 

to yield 
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  ˆ ˆ ˆA × B = (A B − A B ) i + (A B − A B ) j + (A B − A B ) k . (3.3.56)y z z y z x x z x y y x 

3.4.4 Vector Decomposition and the Vector Product: Cylindrical Coordinates 

Recall the cylindrical coordinate system, which we show in Figure 3.31. We have chosen 
two directions, radial and tangential in the plane, and a perpendicular direction to the 
plane. 

! 

r̂ 

ˆk̂

r 
z 

+ x 

+ y 

+ z 

Figure 3.31 Cylindrical coordinates
 

The unit vectors are at right angles to each other and so using the right hand rule, the
 
vector product of the unit vectors are given by the relations 

r̂ × θ̂ = k̂ (3.3.57) 
θ̂ × k̂ = r̂ (3.3.58) 
k̂ × r̂ = θ̂ . (3.3.59) 

Because the vector product satisfies 
 
A
×
 
 
B
= −
 

 
B
×
 
 
A
, we also have that 

Finally 

θ̂ × r̂ = − ̂k 
k̂ × θ̂ = − ̂r 
r̂ × k̂ = − ̂θ . 

r̂ × r̂ = θ̂ × θ̂ = k̂ × k̂ = 
 
0 . 

(3.3.60) 
(3.3.61) 
(3.3.62) 

(3.3.63) 

Example 3.6 Vector Products 

Given two vectors, ˆ ˆ ˆ2 3 7= + − +A i j k 
 

and ˆ ˆ ˆ5 2= + +B i j k 
 

, find 
 
A × 
 
B . 

Solution: 
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A × B = ( A B − A B ) î + ( A B − A B ) ĵ + ( A B − A B ) k̂y z z y z x x z x y y x 

= ((−3)(2) − (7)(1)) ̂i + ((7)(5) − (2)(2)) ̂j+ ((2)(1) − (−3)(5)) k̂
= −13 ̂i + 31 ĵ+17 k̂. 

Example 3.7 Law of Sines 

For the triangle shown in  
B

Figure 3.32(a), prove the law of sines,  
A
 / sinα = / sin β = 

 
C
/ sinγ , using the vector product. 

Figure 3.32(a) Example 3.6 Figure 3.32(b) Vector analysis 
   

Solution: Consider the area of a triangle formed by three vectors A , B , and C , where 
      
A + B + C = 0 (Figure 3.32(b)). Because A + B + C = 0 , we have that 
                

0 = A × (A + B + C) = A × B + A ×C . Thus A × B = −A ×C or . From A × B = A ×C 
       

Figure 17.7b we see that sin β . Therefore A × B = A B sin γ and A ×C = A C 
     

sin β , and hence / sin γ . A similar argument shows that A B sin γ = A C B / sin β = C 
 
/ sin α proving the law of sines. B / sin β = A 

Example 3.8 Unit Normal 

Find a unit vector perpendicular to ˆ ˆ ˆ= + −A i j k 
 

and ˆ ˆ ˆ2 3= − − +B i j k 
 

. 

    
Solution: The vector product A × B is perpendicular to both A and B . Therefore the      

are perpendicular to both A and B . We first calculateunit vectors n̂ = ± A × B / A × B 

  
A × B = ( A B − A B ) î + ( A B − A B ) ĵ+ ( A B − A B ) k̂y z z y z x x z x y y x 

= ((1)(3) − (−1)(−1)) ̂i + ((−1)(2) − (1)(3)) ̂j+ ((1)(−1) − (1)(2)) k̂
= 2 î − 5 ĵ− 3 k̂. 

We now calculate the magnitude 
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= (22 + 52 + 32 )1/2 A × B = (38)1/2 . 

Therefore the perpendicular unit vectors are 

 
n̂ = ± A × B / A × B = ±(2 ̂i − 5 ĵ− 3 k̂) / (38)1/2 .
 

Example 3.9 Volume of Parallelepiped 

  
Show that the volume of a parallelepiped with edges formed by the vectors A , B , and 
    
C is given by A ⋅ (B×C) . 

Solution: The volume of a parallelepiped is given by area of the base times height. If the   
base is formed by the vectors B and C , then the area of the base is given by the 

      
magnitude of B ×C . The vector B ×C = n̂ where n̂ is a unit vector perpendicular B×C 

to the base (Figure 3.33). 

Figure 3.33 Example 3.9 

 
The projection of the vector A along the direction n̂ gives the height of the 

 
parallelepiped. This projection is given by taking the dot product of A with a unit vector 

 
and is equal to ⋅ ˆ height A n = . Therefore 

 
A ⋅ (B × C) = A ⋅ ( B × C )n̂ = ( B × C )A ⋅ n̂ = (area)(height) = (volume) . 

Example 3.10 Vector Decomposition 
 

 Let A be an arbitrary vector and let n̂ be a unit vector in some fixed direction. Show 
 
that A = (A ⋅ n̂)n̂ + (n̂ × A) × n̂ . 

  
Solution: Let A = An̂ + A⊥ ê where A is the component A in the direction of n̂ , ê is 

 
the direction of the projection of A in a plane perpendicular to n̂ , and A⊥ 

is the 
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component of A in the direction of ˆ e n = 0 A ⋅ n̂ = A . Note e . Because ˆ ˆ ⋅ , we have that 
that  

n̂ × A = n̂ × ( An̂ + A⊥ 
ê) = n̂ × A⊥ 

ê = A⊥ 
(n̂ × ê) . 

The unit vector n̂× ê lies in the plane perpendicular to n̂ and is also perpendicular to ê . 

Therefore (n̂ × ê) × n̂ is also a unit vector that is parallel to ê (by the right hand rule. So 


 
(n̂ × A) × n̂ = A⊥ 

ê . Thus 

A =
 
 

A
 

n̂+ A⊥ê = (A ⋅ n̂)n̂+ (n̂× A) × n̂ . 
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