
  

  
 
         

        
        

      
          

       
      

           
         

   
 
        

        
        

      
 

 

 
 

  
 

 
          

          
 

 

17.1 Introduction 

A body is called a rigid body if the distance between any two points in the body 
does not change in time. Rigid bodies, unlike point masses, can have forces applied at 
different points in the body. For most objects, treating as a rigid body is an idealization, 
but a very good one. In addition to forces applied at points, forces may be distributed 
over the entire body. Forces that are distributed over a body are difficult to analyze; 
however, for example, we regularly experience the effect of the gravitational force on 
bodies. Based on our experience observing the effect of the gravitational force on rigid 
bodies, we shall demonstrate that the gravitational force can be concentrated at a point in the rigid body called the center of gravity, which for small bodies (so that g may be 
taken as constant within the body) is identical to the center of mass of the body. 

Let’s consider a rigid rod thrown in the air (Figure 17.1) so that the rod is spinning as its center of mass moves with velocity vcm . We have explored the physics of 
translational motion; now, we wish to investigate the properties of rotational motion 
exhibited in the rod’s motion, beginning with the notion that every particle is rotating 
about the center of mass with the same angular (rotational) velocity. 

Figure 17.1 The center of mass of a thrown rigid rod follows a parabolic trajectory while 
the rod rotates about the center of mass. 

We can use Newton’s Second Law to predict how the center of mass will move. 
Because the only external force on the rod is the gravitational force (neglecting the action 
of air resistance), the center of mass of the body will move in a parabolic trajectory. 
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How was the rod induced to rotate? In order to spin the rod, we applied a torque 
with our fingers and wrist to one end of the rod as the rod was released. The applied 
torque is proportional to the angular acceleration. The constant of proportionality is the 
moment of inertia. When external forces and torques are present, the motion of a rigid 
body can be extremely complicated while it is translating and rotating in space. 

In order to describe the relationship between torque, moment of inertia, and 
angular acceleration, we will introduce a new vector operation called the vector product 
also know as the “cross product” that takes any two vectors and generates a new vector. 
The vector product is a type of “multiplication” law that turns our vector space (law for 
addition of vectors) into a vector algebra (a vector algebra is a vector space with an 
additional rule for multiplication of vectors). 

17.2 Vector Product (Cross Product) 
  

Let A and B be two vectors. Because any two non-parallel vectors form  
a plane, we denote the angle θ to be the angle between the vectors A and    
B as shown in Figure 17.2. The magnitude of the vector product A × B   
of the vectors A and B is defined to be product of the magnitude of the   
vectors A and B with the sine of the angle θ between the two vectors, 

 
A
×
 
 
B
 =
 

 
B


 
A
 sin(θ) . (17.2.1) 

The angle θ between the vectors is limited to the values 0 ≤θ ≤π 
ensuring that sin( ) ≥ 0θ . 

Figure 17.2 Vector product geometry. 

 
The direction of the vector product is defined as follows. The vectors A  
and B form a plane. Consider the direction perpendicular to this plane. 
There are two possibilities: we shall choose one of these two (the one   
shown in Figure 17.2) for the direction of the vector product A × B using 
a convention that is commonly called the “right-hand rule”. 
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17.2.1 Right-hand Rule for the Direction of Vector Product 

  
so that the tails are touching. Then draw  

B
The first step is to redraw the vectors A and B  
an arc starting from the vector A and finishing on the vector . Curl your right fingers 
the same way as the arc. Your right thumb points in the direction of the vector product   
A × B (Figure 17.3). 

Figure 17.3 Right-Hand Rule. 

  
You should remember that the direction of the vector product A × B is perpendicular to   
the plane formed by A and B . We can give a geometric interpretation to the magnitude 
of the vector product by writing the magnitude as 

 
A
×
 
 
B
 =
 

 
A
(
 B
sinθ ) . (17.2.2) 

 
B

  
The vectors A and B form a parallelogram. The area of the parallelogram is equal to the 
height times the base, which is the magnitude of the vector product. In Figure 17.4, two 
different representations of the height and base of a parallelogram are illustrated. As 
 

Bdepicted in Figure 17.4a, the term sinθ is the projection of the vector in the 
 

direction perpendicular to the vector B . We could also write the magnitude of the vector 
product as

 
A
×
 
 
B
 =
(
  A
sinθ )  B
 .
 (17.2.3)
 

  
AThe term sinθ is the projection of the vector A in the direction perpendicular to the 

vector 
 
B
 as shown in Figure 17.4(b). The vector product of two vectors that are parallel 

(or anti-parallel) to each other is zero because the angle between the vectors is 0 (or π ) 
and sin(0) = 0 π = 0(or sin( ) ). Geometrically, two parallel vectors do not have a unique 
component perpendicular to their common direction. 
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(a)	 (b) 

Figure 17.4 Projection of (a) 
 
B
 perpendicular to 

 
A
, (b) of 

 
A
 perpendicular to 

 
B
 

17.2.2 Properties of the Vector Product 

(1)	 The vector product is anti-commutative because changing the order of the vectors 
changes the direction of the vector product by the right hand rule: 

    
A × B = −B × A .	 (17.2.4) 


 
(2) The vector product between a vector c A where c is a scalar and a vector 

 
B
 is 

    
c A × B = c (A × B) .	 (17.2.5) 

Similarly, 	    
A × c B = c (A × B) .	 (17.2.6) 

 	  
(3)	 The vector product between the sum of two vectors A and B with a vector C is 

	       
(A + B)×C = A ×C + B×C (17.2.7) 

Similarly, 	       
A × (B + C) = A × B + A ×C .	 (17.2.8) 

17.2.3 Vector Decomposition and the Vector Product: Cartesian Coordinates 

We first calculate that the magnitude of vector product of the unit vectors î and ĵ : 

ˆ ˆ ˆ ˆ| i × j | | || |sin( / 2) = 1,	 (17.2.9)= i j π 

ˆ ˆbecause the unit vectors have magnitude | | | | = j = 1 π / 2) = 1 . By the right hand i and sin( 
rule, the direction of î × ̂j is in the +k̂ as shown in Figure 17.5. Thus î × ̂j = k̂ . 
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Figure 17.5 Vector product of î × ̂j 

We note that the same rule applies for the unit vectors in the y and z directions, 

ˆ ˆ ˆ ˆ ˆ ˆj×k = i, k × i = j . (17.2.10) 

By the anti-commutatively property (1) of the vector product, 

ˆ ˆ ˆ ˆ ˆ ˆj× i = −k, i ×k = −j (17.2.11) 

The vector product of the unit vector î with itself is zero because the two unit vectors are 
parallel to each other, ( sin(0) = 0 ), 

ˆ ˆ ˆ ˆ| i × i | | || | sin(0) = 0 . (17.2.12)= i i 

The vector product of the unit vector ĵ with itself and the unit vector k̂ with itself are 
also zero for the same reason, 

ˆ ˆ ˆ ˆ = 0 . (17.2.13)×j j = 0, k ×k 

With these properties in mind we can now develop an algebraic expression for the vector 
product in terms of components. Let’s choose a Cartesian coordinate system with the  
vector B pointing along the positive x-axis with positive x-component Bx . Then the 

  
vectors A and B can be written as 

 ˆ ˆ ˆA = A i + A j + A k (17.2.14)x y z 
 ˆB = Bx i , (17.2.15) 

respectively. The vector product in vector components is 

  ˆ ˆ ˆ ˆA × B = ( A i + A j + A k) × B i . (17.2.16)x y z x 
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This becomes,   ˆ ˆ ˆ ˆ ˆ ˆA × B = (A i × B i) + (A j× B i) + (A k × B i)x x y x z x 

ˆ ˆ ˆ ˆ ˆ ˆ= A B (i × i) + A B (j× i) + A B (k × i) . (17.2.17)x x y x z x 

ˆ ˆ= −A B k + A B jy x z x 

The vector component expression for the vector product easily generalizes for arbitrary 
vectors  

î + A ĵ+ k̂A =
Ax Az (17.2.18)
y 
 ˆ ˆ ˆB = B i + B j + B k , (17.2.19)x y z 

to yield   ˆ ˆ ˆA × B = (A B − A B ) i + (A B − A B ) j + (A B − A B ) k . (17.2.20)y z z y z x x z x y y x 

17.2.4 Vector Decomposition and the Vector Product: Cylindrical Coordinates 

Recall the cylindrical coordinate system, which we show in Figure 17.6. We have chosen 
two directions, radial and tangential in the plane, and a perpendicular direction to the 
plane. 

Figure 17.6 Cylindrical coordinates
 

The unit vectors are at right angles to each other and so using the right hand rule, the
 
vector product of the unit vectors are given by the relations 

r̂ × θ̂ = k̂ (17.2.21) 
θ̂ × k̂ = r̂ (17.2.22) 
k̂ × r̂ = θ̂ . (17.2.23) 

Because the vector product satisfies 
 
A
×
 
 
B
= −
 

 
B
×
 
 
A
, we also have that 

θ̂ × r̂ = −k̂ (17.2.24) 
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k̂ × θ̂ = −r̂ (17.2.25) 
r̂ × k̂ = −θ̂ . (17.2.26) 

Finally  
r̂ × r̂ = θ̂ × θ̂ = k̂ × k̂ = 0 . (17.2.27) 

Example 17.1 Vector Products 

 ˆ ˆ ˆ ˆ ˆ ˆGiven two vectors, A = 2 i + −3 j + 7 k and B = 5i + j + 2k , find 
 
A
×
 
 
B
.
 

Solution:   
A × B = ( A B − A B ) î + ( A B − A B ) ĵ + ( A B − A B ) k̂y z z y z x x z x y y x 

= ((−3)(2) − (7)(1)) ̂i + ((7)(5) − (2)(2)) ̂j+ ((2)(1) − (−3)(5)) k̂
= −13 ̂i + 31 ĵ+17 k̂. 

Example 17.2 Law of Sines 

For the triangle shown in  
B

Figure 17.7a, prove the law of sines,  
A
 / sinα = / sin β = 

 
C
/ sinγ , using the vector product. 

Figure 17.7 (a) Example 17.2 Figure 17.7 (b) Vector analysis 
   

Solution: Consider the area of a triangle formed by three vectors A , B , and C , where 
      
A + B + C = 0 (Figure 17.7b). Because A + B + C = 0 , we have that 
                

0 = A × (A + B + C) = A × B + A ×C . Thus A × B = −A ×C or . From A × B = A ×C 
       

Figure 17.7b we see that sin β . Therefore A × B = A B sin γ and A ×C = A C 
     

sin β , and hence / sin γ . A similar argument shows that A B sin γ = A C B / sin β = C 
 
/ sin α proving the law of sines. B / sin β = A 

Example 17.3 Unit Normal 

 ˆ ˆ ˆ ˆ ˆ ˆFind a unit vector perpendicular to A = i + j − k and B = −2i − j + 3k . 
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Solution: The vector product A × B is perpendicular to both A and B . Therefore the      

are perpendicular to both A and B . We first calculate unit vectors n̂ = ± A × B / A × B 

  
A × B = ( A B − A B ) î + ( A B − A B ) ĵ+ ( A B − A B ) k̂y z z y z x x z x y y x 

= ((1)(3) − (−1)(−1)) ̂i + ((−1)(2) − (1)(3)) ̂j+ ((1)(−1) − (1)(2)) k̂
= 2 î − 5 ĵ− 3 k̂. 

We now calculate the magnitude 

  
= (22 + 52 + 32 )1/2 A × B = (38)1/2 . 

Therefore the perpendicular unit vectors are 

 
n̂ = ± A × B / A × B = ±(2 ̂i − 5 ĵ− 3 k̂) / (38)1/2 .
 

Example 17.4 Volume of Parallelepiped 

  
Show that the volume of a parallelepiped with edges formed by the vectors A , B , and 
    
C is given by A ⋅ (B×C) . 

Solution: The volume of a parallelepiped is given by area of the base times height. If the   
base is formed by the vectors B and C , then the area of the base is given by the 

      
magnitude of B ×C . The vector B ×C = n̂ where n̂ is a unit vector perpendicular B×C 

to the base (Figure 17.8). 

Figure 17.8 Example 17.4 

 
The projection of the vector A along the direction n̂ gives the height of the 

 
parallelepiped. This projection is given by taking the dot product of A with a unit vector 

 
and is equal to ⋅ ˆ height A n = . Therefore 

 
A ⋅ (B × C) = A ⋅ ( B × C )n̂ = ( B × C )A ⋅ n̂ = (area)(height) = (volume) . 
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Example 17.5 Vector Decomposition 
 

Let A be an arbitrary vector and let n̂ be a unit vector in some fixed direction. Show 
 
that A = (A ⋅ n̂)n̂ + (n̂ × A) × n̂ . 

  
Solution: Let A = An̂ + A⊥ ê where A is the component A in the direction of n̂ , ê is 

 
the direction of the projection of A in a plane perpendicular to n̂ , and A⊥ 

is the 
  

⋅  . Note component of A in the direction of ê . Because e n ˆ ˆ = 0 , we have that A ⋅ n̂ = A
that  

n̂ × A = n̂ × ( An̂ + A⊥ 
ê) = n̂ × A⊥ 

ê = A⊥ 
(n̂ × ê) . 

The unit vector n̂× ê lies in the plane perpendicular to n̂ and is also perpendicular to ê . 

Therefore (n̂ × ê) × n̂ is also a unit vector that is parallel to ê (by the right hand rule. So 


 
(n̂ × A) × n̂ = A⊥ 

ê . Thus 

 
A

 
A =
 n̂+ A⊥ê = (A ⋅ n̂)n̂+ (n̂× A) × n̂ . 

17.3 Torque 

17.3.1 Definition of Torque about a Point 

In order to understand the dynamics of a rotating rigid body we will introduce a new  quantity, the torque. Let a force FP with magnitude F = act at a point P . Let , FP rS P 

 rbe the vector from the point S to a point P , with magnitude r = . The angle ,S P 
between the vectors , and FP is θ with [0 ≤θ ≤π ] (Figure 17.9).rS P 



Figure 17.9 Torque about a point S due to a force acting at a point P 

 
The torque about a point S due to force FP acting at P , is defined by 

τS 

 
 

FP . (17.2.28)
×
= rS , P 
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The magnitude of the torque about a point S due to force FP acting at P , 
is given by 


τ S ≡ = r F sinθ . (17.2.29) 

The SI units for torque are [N ⋅ m] . The direction of the torque is perpendicular to the 

τS 

plane formed by the vectors , and FP (for [0 < θ < π ] ), and by definition points in rS P 

the direction of the unit normal vector to the plane n̂ RHR as shown in Figure 17.10. 

Figure 17.10 Vector direction for the torque
 

Figure 17.11 shows the two different ways of defining height and base for a
 parallelogram defined by the vectors , and FP .rS P 

Figure 17.11 Area of the torque parallelogram. 

 
Let r = r sin θ and let F = F sin θ be the component of the force F that is ⊥ ⊥ P

perpendicular to the line passing from the point S to P . (Recall the angle θ has a range 
of values 0 ≤θ ≤π so both r⊥ ≥ 0 and F⊥ ≥ 0 .) Then the area of the parallelogram 

defined by , and FP is given by rS P 

Area = τ = r F = r F = r F sin θ . (17.2.30)S ⊥ ⊥ 
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We can interpret the quantity r⊥ as follows. 

Figure 17.12 The moment arm about the point S and line of action of force passing 
through the point P 

 
We begin by drawing the line of action of the force FP . This is a straight line passing 

 
through P , parallel to the direction of the force FP . Draw a perpendicular to this line of 
action that passes through the point S (Figure 17.12). The length of this perpendicular,  
r⊥ = r sin θ , is called the moment arm about the point S of the force FP . 

You should keep in mind three important properties of torque: 

1. The torque is zero if the vectors , and FP are parallel (θ = 0) or anti-parallel rS P 

(θ = π ) . 

2.	 Torque is a vector whose direction and magnitude depend on the choice of a point 
S about which the torque is calculated. 

3.	 The direction of torque is perpendicular to the plane formed by the two vectors,   rFP and r = (the vector from the point S to a point P ).,S P 

17.3.2 Alternative Approach to Assigning a Sign Convention for Torque 

 In the case where all of the forces Fi and position vectors , are coplanar (or zero), we ri P 

can, instead of referring to the direction of torque, assign a purely algebraic positive or 
negative sign to torque according to the following convention. We note that the arc in 
Figure 17.13a circles in counterclockwise direction. (Figures 17.13a and 17.13b use the 
simplifying assumption, for the purpose of the figure only, that the two vectors in  question, FP and , are perpendicular. The point S about which torques are calculated rS P 

is not shown.) 
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(a)	 (b) 

Figure 17.13 (a) Positive torque out of plane, (b) positive torque into plane 

We can associate with this counterclockwise orientation a unit normal vector n̂
according to the right-hand rule: curl your right hand fingers in the counterclockwise 
direction and your right thumb will then point in the n̂1 direction (Figure 17.13a). The 

 

with the unit normal n̂2 . 

 

  rS P 

 

arc in Figure 17.13b circles in the clockwise direction, and we associate this orientation 

It’s important to note that the terms “clockwise” and “counterclockwise” might be 
Fdifferent for different observers. For instance, if the plane containing and isP , 

horizontal, an observer above the plane and an observer below the plane would disagree 
on the two terms. For a vertical plane, the directions that two observers on opposite sides 
of the plane would be mirror images of each other, and so again the observers would 

1. Suppose we choose counterclockwise as positive. Then we assign a positive sign 
for the component of the torque when the torque is in the same direction as the 



disagree. 

τ n̂unit normal n̂1 FP FP, i.e. 1 , (Figure 17.13a).×
 = +
= S rS ,P rS ,P 



2.	 Suppose we choose clockwise as positive. Then we assign a negative sign for the 
component of the torque in Figure 17.13b because the torque is directed opposite 

τ n̂to the unit normal n̂2 FP FP, i.e. = −
×
=
 rS ,P rS ,P 2 .S 

Example 17.6 Torque and Vector Product 

	  ˆ ˆConsider two vectors rP ,F = x̂i with x > 0 and F = Fxi + Fzk with Fx > 0 and Fz > 0 . 
  

Calculate the torque rP,F × F . 

Solution: We calculate the vector product noting that in a right handed choice of unit  
vectors, î × î = 0 and î × k̂ = − ̂j , 

 
rP,F × F = xî × (Fx ̂i + Fzk̂) = (xî × Fx ̂i) + (xî × Fzk̂) = −xFz ĵ . 
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Because x > 0 and Fz > 0 , the direction of the vector product is in the negative y -
direction. 

Example 17.7 Calculating Torque 

In Figure 17.14, a force of magnitude F is applied to one end of a lever of length L. What 
is the magnitude and direction of the torque about the point S? 



Figure 17.14 Example 17.7 Figure 17.15 Coordinate system
 

Solution: Choose units vectors such that î × ĵ = k̂ , with î pointing to the right and ĵ
 
τS 


 
 
pointing up (Figure 17.15). The torque about the point S is given by F ,
= rS , F ×
 

 
where r SF = Lcosθ î + Lsinθ ĵ and F = −Fĵ then 


τS = (Lcosθ î + Lsinθ ĵ) × −F ĵ = −FLcosθ k̂ . 

Example 17.8 Torque and the Ankle 

A person of mass m is crouching with their weight evenly distributed on both tiptoes.  
The free-body force diagram on the skeletal part of the foot is shown in Figure 17.16. The  
normal force N acts at the contact point between the foot and the ground. In this position,   

Fthe tibia acts on the foot at the point S with a force F of an unknown magnitude F = 

and makes an unknown angle β with the vertical. This force acts on the ankle a 
horizontal distance s from the point where the foot contacts the floor. The Achilles  

Ttendon also acts on the foot and is under considerable tension with magnitude T ≡ and 
acts at an angle α with the horizontal as shown in the figure. The tendon acts on the 
ankle a horizontal distance b from the point S where the tibia acts on the foot. You may 
ignore the weight of the foot. Let g be the gravitational constant. Compute the torque 
about the point S due to (a) the tendon force on the foot; (b) the force of the tibia on the 
foot; (c) the normal force of the floor on the foot. 

17-13 



  

 
 

  
 
 

            
 

 

 
 

 
 

 
 
 

  
 
     

 
           

             
   

 

     
 

         
             

Figure 17.16 Force diagram and coordinate system for ankle
 

Solution: (a) We shall first calculate the torque due to the force of the Achilles tendon on 
 ˆ ˆthe ankle. The tendon force has the vector decomposition T = T cos α i + T sin α j . 



Figure 17.17 Torque diagram for tendon Figure 17.18 Torque diagram for normal 
force on ankle force on ankle r S ,N 

 ˆThe vector from the point S to the point of action of the force is given by r , = −biS T 
 

(Figure 17.17). Therefore the torque due to the force of the tendon T on the ankle about 
the point S is then 

τ S ,T 

 = rS ,T 

 
× T = −bî × (T cosα î + T sinα ĵ) = −bT sinα k̂ . 

(b) The torque diagram for the normal force is shown in Figure 17.18. The vector from 
the point S to the point where the normal force acts on the foot is given by 
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 rS ,N = (sî − hĵ) . Because the weight is evenly distributed on the two feet, the normal force 
on one foot is equal to half the weight, or N = (1 / 2)mg . The normal force is therefore 

 
given by N = N ĵ = (1/ 2)mg ̂j . Therefore the torque of the normal force about the point 
S is 

 τ S N , = r , × N ĵ = (sî − hĵ)× N ĵ = s N k̂ = (1/ 2) s mg k̂ .S N 

 
(c) The force F that the tibia exerts on the ankle will make no contribution to the torque 
about this point S since the tibia force acts at the point S and therefore the vector 
  
rS F = 0 . ,

17-15 



 

MIT OpenCourseWare
https://ocw.mit.edu

8.01 Classical Mechanics
Fall 2016

For Information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms



