
 

 
   

 
  

 
          

            
          

   
 

         
          

       
      

 

 
  

  

14.9 Worked Examples 

Example 14.2 Escape Velocity of Toro 

The asteroid Toro, discovered in 1964, has a radius of about R = 5.0km and a mass of 
about mt = 2.0 ×1015 kg . Let’s assume that Toro is a perfectly uniform sphere. What is the 
escape velocity for an object of mass m on the surface of Toro? Could a person reach 
this speed (on earth) by running? 

Solution: The only potential energy in this problem is the gravitational potential energy. 
We choose the zero point for the potential energy to be when the object and Toro are an 
infinite distance apart, UG (∞) ≡ 0 . With this choice, the potential energy when the object 
and Toro are a finite distance r apart is given by 

Gmt m
U G (r) = − (14.8.1)

r 
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with U G (∞) ≡ 0 . The expression escape velocity refers to the minimum speed necessary 
for an object to escape the gravitational interaction of the asteroid and move off to an 
infinite distance away. If the object has a speed less than the escape velocity, it will be 
unable to escape the gravitational force and must return to Toro. If the object has a speed 
greater than the escape velocity, it will have a non-zero kinetic energy at infinity. The 
condition for the escape velocity is that the object will have exactly zero kinetic energy at 
infinity. 

We choose our initial state, at time ti , when the object is at the surface of the asteroid 
with speed equal to the escape velocity. We choose our final state, at time t f , to occur 
when the separation distance between the asteroid and the object is infinite. 

The initial kinetic energy is Ki = (1/ 2)mv esc 
2 . The initial potential energy is 

Ui = −Gmt m / R , and so the initial mechanical energy is 

1 2 Gmt mEi = Ki +Ui = mv esc − . (14.8.2)
2 R 

The final kinetic energy is K f = 0 , because this is the condition that defines the escape 

velocity. The final potential energy is zero, U f = 0 because we chose the zero point for 
potential energy at infinity. The final mechanical energy is then 

E f = K f + U f = 0 . (14.8.3) 

There is no non-conservative work, so the change in mechanical energy is zero 

0 = W nc = ΔEm = E f − Ei . (14.8.4) 
Therefore 

⎛ 1 2 Gmt m⎞
0 = − mv esc − (14.8.5)

⎝⎜ ⎠⎟ 
.

2 R 

This can be solved for the escape velocity, 

(14.8.6) 
= 7.3 m ⋅s−1. 

v esc = 
2Gmt 

R 

= 2(6.67 ×10−11 N ⋅m2 ⋅kg−2 )(2.0 ×1015 kg) 
(5.0 ×103 m) 
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Considering that Olympic sprinters typically reach velocities of 12 m ⋅ s−1 , this is an easy 
speed to attain by running on earth. It may be harder on Toro to generate the acceleration 
necessary to reach this speed by pushing off the ground, since any slight upward force 
will raise the runner’s center of mass and it will take substantially more time than on 
earth to come back down for another push off the ground. 

Example 14.3 Spring-Block-Loop-the-Loop 

A small block of mass m is pushed against a spring with spring constant k and held in 
place with a catch. The spring is compressed an unknown distance x (Figure 14.12). 
When the catch is removed, the block leaves the spring and slides along a frictionless 
circular loop of radius r . When the block reaches the top of the loop, the force of the 
loop on the block (the normal force) is equal to twice the gravitational force on the mass. 
(a) Using conservation of energy, find the kinetic energy of the block at the top of 
the loop. (b) Using Newton’s Second Law, derive the equation of motion for the block 
when it is at the top of the loop. Specifically, find the speed vtop in terms of the 
gravitation constant g and the loop radius r . (c) What distance was the spring 
compressed? 

Figure 14.12 Initial state for spring-block-loop-the-loop system 

Solution: a) Choose for the initial state the instant before the catch is released. The initial 
kinetic energy is Ki = 0 . The initial potential energy is non-zero, Ui = (1 / 2)k x2 . The 
initial mechanical energy is then 

1
Ei = Ki + Ui = k x2 . (14.8.7)

2 

Choose for the final state the instant the block is at the top of the loop. The final kinetic 
energy is K f = (1/ 2)mv2 ; the block is in motion with speed vtop t op . The final potential 

energy is non-zero, U f = (mg)(2R) . The final mechanical energy is then 

1 2E f = K f + U f = 2mgR + 
2 

mvtop . (14.8.8) 

Because we are assuming the track is frictionless and neglecting air resistance, there is no 
non- conservative work. The change in mechanical energy is therefore zero, 
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0 = W = ΔEm = E f (14.8.9)nc − Ei . 

Mechanical energy is conserved, E f = Ei , therefore 

1 2 1
2mgR + mvtop = k x2 . (14.8.10)

2 2 

From Equation (14.8.10), the kinetic energy at the top of the loop is 

1 2 1 
mvtop = k x2 − 2mgR . (14.8.11)

2 2 

b) At the top of the loop, the forces on the block are the gravitational force of magnitude 
mg and the normal force of magnitude N , both directed down. Newton’s Second Law 
in the radial direction, which is the downward direction, is 

2mv 
−mg − N = − top . (14.8.12)

R 

In this problem, we are given that when the block reaches the top of the loop, the force of 
the loop on the block (the normal force, downward in this case) is equal to twice the 
weight of the block, N = 2mg . The Second Law, Eq. (14.8.12), then becomes 

2mv 
3mg = top . (14.8.13)

R 

We can rewrite Equation (14.8.13) in terms of the kinetic energy as 

3 1 2mg R = mv top . (14.8.14)
2 2 

The speed at the top is therefore 
vtop = 3mg R . (14.8.15) 

c) Combing Equations (14.8.11) and (14.8.14) yields 

7 
mg R = 

1 
k x2 . (14.8.16)

2 2 

Thus the initial displacement of the spring from equilibrium is 
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7mg R 
x 

k 
= .	 (14.8.17)  

Example 14.4 Mass-Spring on a Rough Surface 

A block of mass m slides along a horizontal table with speed v0 . At x = 0 it hits a 
spring with spring constant k and begins to experience a friction force. The coefficient of 
friction is variable and is given by µ = bx , where b is a positive constant. Find the loss 
in mechanical energy when the block first momentarily comes to rest. 

Figure 14.13 Spring-block system 

Solution: From the model given for the frictional force, we could find the non-
conservative work done, which is the same as the loss of mechanical energy, if we knew 
the position x f where the block first comes to rest. The most direct (and easiest) way to 

find x f is to use the work-energy theorem. The initial mechanical energy is Ei = mvi 
2 / 2 

and the final mechanical energy is E f = k x 2 
f / 2 (note that there is no potential energy 

term in Ei and no kinetic energy term in E f ). The difference between these two 
mechanical energies is the non-conservative work done by the frictional force, 

x=x x=x x=xf f	 f 

W = F dx = −F dx = −µ N dx nc	 ∫ nc ∫ friction ∫ 
x=0 x=0 x=0 (14.8.18) 

x 1 2= − b x mg dx = − bmg x .∫0 
f 

2 f 

We then have that 
W	 = ΔE nc m 

W nc = E f − Ei (14.8.19) 

1 2 1 1 2− bmg x f = k x 2 
f − mvi .2 2 2 

Solving the last of these equations for x2 
f yields 
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2 mv2 

x = 0
f . (14.8.20)

k + bmg 

Substitute Eq. (14.8.20) into Eq. (14.8.18) gives the result that 

bmg mv 2 mv 2 ⎛ k ⎞
−1 

W 0
nc = −  = − 0 ⎜1+ ⎟ . (14.8.21)

2 k + bmg 2 ⎝ bmg ⎠ 

It is worth checking that the above result is dimensionally correct. From the model, the 
parameter b must have dimensions of inverse length (the coefficient of friction µ must 
be dimensionless), and so the product bmg has dimensions of force per length, as does 
the spring constant k ; the result is dimensionally consistent. 

Example 14.5 Cart-Spring on an Inclined Plane 

An object of mass m slides down a plane that is inclined at an angle θ from the 
horizontal (Figure 14.14). The object starts out at rest. The center of mass of the cart is a 
distance d from an unstretched spring that lies at the bottom of the plane. Assume the 
spring is massless, and has a spring constant k . Assume the inclined plane to be 
frictionless. (a) How far will the spring compress when the mass first comes to rest? (b) 
Now assume that the inclined plane has a coefficient of kinetic friction µk . How far will 
the spring compress when the mass first comes to rest? The friction is primarily between 
the wheels and the bearings, not between the cart and the plane, but the friction force may 
be modeled by a coefficient of friction µk . (c) In case (b), how much energy has been 
lost to friction? 

Figure 14.14 Cart on inclined plane 

Solution: Let x denote the displacement of the spring from the equilibrium position. 
Choose the zero point for the gravitational potential energy U g (0) = 0 not at the very 
bottom of the inclined plane, but at the location of the end of the unstretched spring. 
Choose the zero point for the spring potential energy where the spring is at its 
equilibrium position, U s (0) = 0 . 

a) Choose for the initial state the instant the object is released (Figure 14.15). The initial 
kinetic energy is Ki = 0 . The initial potential energy is non-zero, Ui = mg d sinθ . The 
initial mechanical energy is then 
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Ei = Ki + Ui = mg d sinθ (14.8.22) 

Choose for the final state the instant when the object first comes to rest and the spring is 
compressed a distance x at the bottom of the inclined plane (Figure 14.16). The final 
kinetic energy is K f = 0 since the mass is not in motion. The final potential energy is 

non-zero, U f = k x2 / 2 − x mg sinθ . Notice that the gravitational potential energy is 
negative because the object has dropped below the height of the zero point of 
gravitational potential energy. 

Figure 14.15 Initial state Figure 14.16 Final state 

The final mechanical energy is then 

E f = K f + U f = 
1 

k x2 − x mg sinθ . (14.8.23)
2 

Because we are assuming the track is frictionless and neglecting air resistance, there is no 
non- conservative work. The change in mechanical energy is therefore zero, 

0 = W nc = ΔE m = E f − Ei . (14.8.24) 
Therefore 

d mg sinθ = 
1 
2 

k x2 − x mg sinθ . (14.8.25) 

This is a quadratic equation in x , 

x2 − 
2mg sinθ 

k 
x − 

2d mg sinθ 
k 

= 0 . (14.8.26) 

In the quadratic formula, we want the positive choice of square root for the solution to 
ensure a positive displacement of the spring from equilibrium, 
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1+ 2(k d / mg)sinθ ). 

mg sinθ ⎛ m2 g 2 sin2θ 2d mg sinθ ⎞
1 2 

x = + +
k ⎝⎜ k 2 k ⎠⎟ (14.8.27) 

mg = (sinθ +
k 

(What would the solution with the negative root represent?) 

b) The effect of kinetic friction is that there is now a non-zero non-conservative work 
done on the object, which has moved a distance, d + x , given by 

W = − fk N (d + x) = −µk mg cosθ(d + x) . (14.8.28)nc (d + x) = −µk 

Note the normal force is found by using Newton’s Second Law in the perpendicular direction 
to the inclined plane, 

N − mg cosθ = 0 . (14.8.29) 

The change in mechanical energy is therefore 

W nc = ΔEm = E f − Ei , (14.8.30) 
which becomes 

⎛ 1 ⎞
−µk mg cosθ(d + x) = k x2 − x mg sinθ

⎠⎟ 
− d mg sinθ . (14.8.31)

⎝⎜ 2 

Equation (14.8.31) simplifies to 

⎛ 1 ⎞
0 = k x2 − x mg(sinθ − µk cosθ )

⎠⎟ 
− d mg(sinθ − µk cosθ ) . (14.8.32)

⎝⎜ 2 

This is the same as Equation (14.8.25) above, but with sinθ → sinθ − µk cosθ . The 
maximum displacement of the spring is when there is friction is then 

mg 
x = ((sinθ − µk cosθ ) + 1+ 2(k d / mg)(sinθ − µk cosθ )) . (14.8.33)

k 
. 
c) The energy lost to friction is given by W nc = −µk mg cosθ(d + x) , where x is given in 
part b). 

Example 14.6 Object Sliding on a Sphere 

A small point like object of mass m rests on top of a sphere of radius R . The object is 
released from the top of the sphere with a negligible speed and it slowly starts to slide 
(Figure 14.17). Let g denote the gravitation constant. (a) Determine the angle θ1 with 
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respect to the vertical at which the object will lose contact with the surface of the sphere. 
(b) What is the speed v1 of the object at the instant it loses contact with the surface of the 
sphere. 

Figure 14.17 Object sliding on surface of sphere 

Solution: We begin by identifying the forces acting on the object. There are two forces 
acting on the object, the gravitation and radial normal force that the sphere exerts on the 
particle that we denote by N . We draw a free-body force diagram for the object while it 
is sliding on the sphere. We choose polar coordinates as shown in Figure 14.18. 

Figure 14.18 Free-body force diagram on object 

The key constraint is that when the particle just leaves the surface the normal force is 
zero, 

N (θ1) = 0 , (14.8.34) 

where θ1 denotes the angle with respect to the vertical at which the object will just lose 
contact with the surface of the sphere. Because the normal force is perpendicular to the 
displacement of the object, it does no work on the object and hence conservation of 
energy does not take into account the constraint on the motion imposed by the normal 
force. In order to analyze the effect of the normal force we must use the radial component 
of Newton’s Second Law, 

v2

N − mg cosθ = −m . (14.8.35)
R 

Then when the object just loses contact with the surface, Eqs. (14.8.34) and (14.8.35) 
require that 
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v 2 

mg cosθ 1
1 = m . (14.8.36)

R 

where v1 denotes the speed of the object at the instant it loses contact with the surface of 
the sphere. Note that the constrain condition Eq. (14.8.36) can be rewritten as 

mgRcosθ1 = mv 2 
1 . (14.8.37) 

We can now apply conservation of energy. Choose the zero reference point U = 0 for 
potential energy to be the midpoint of the sphere. 

Identify the initial state as the instant the object is released (Figure 14.19). We can 
neglect the very small initial kinetic energy needed to move the object away from the top 
of the sphere and so Ki = 0 . The initial potential energy is non-zero, Ui = mgR . The 
initial mechanical energy is then 

Ei = Ki + Ui = mgR . (14.8.38) 

Figure 14.19 Initial state Figure 14.20 Final state 

Choose for the final state the instant the object leaves the sphere (Figure 14.20). The final 
kinetic energy is K f = mv2 

1 / 2 ; the object is in motion with speed v1 . The final potential 

energy is non-zero, U f = mgRcosθ1 . The final mechanical energy is then 

E f = K f + U f = 
2
1 mv2 

1 + mgRcosθ1 . (14.8.39) 

Because we are assuming the contact surface is frictionless and neglecting air resistance, 
there is no non-conservative work. The change in mechanical energy is therefore zero, 

0 = W nc = ΔE m = E f − Ei . (14.8.40)
Therefore 

1 mv2 
1 + mgRcosθ1 = mgR . (14.8.41)

2 
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We now solve the constraint condition Eq. (14.8.37) into Eq. (14.8.41) yielding 

1 mgRcosθ1 + mgRcosθ1 = mgR . (14.8.42)
2 

We can now solve for the angle at which the object just leaves the surface 

θ1 = cos−1(2 / 3) . (14.8.43) 

We now substitute this result into Eq. (14.8.37) and solve for the speed 

v1 = 2gR / 3 . (14.8.44) 
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