
  

           
          
         

      
          

 
  

 
  

  

 
          

          
        

           
  

 
   

 
                  

            
          

 
 

           
 

 

 
  

  

 

   
 

 
  

  

 
  

 

 
  

  

 
       

     

There is a direct connection between the work done on a point-like object and the change 
in kinetic energy the point-like object undergoes. If the work done on the object is non-
zero, this implies that an unbalanced force has acted on the object, and the object will 
have undergone acceleration. For an object undergoing one-dimensional motion the left 
hand side of Equation (13.3.16) is the work done on the object by the component of the 
sum of the forces in the direction of displacement, 

x=x f 1 1 2W = F dx = mv f mvi = K f − Ki = ΔK (13.6.1)∫ x 2
2 − 

2 x=xi 

When the work done on an object is positive, the object will increase its speed, and 
negative work done on an object causes a decrease in speed. When the work done is zero, 
the object will maintain a constant speed. In fact, the work-energy relationship is quite 
precise; the work done by the applied force on an object is identically equal to the change 
in kinetic energy of the object. 

Example 13.7 Gravity and the Work-Energy Theorem 

Suppose a ball of mass m = 0.2 kg starts from rest at a height y0 = 15 m above the 
surface of the earth and falls down to a height y f = 5.0 m above the surface of the earth. 
What is the change in the kinetic energy? Find the final velocity using the work-energy 
theorem. 

Solution: As only one force acts on the ball, the change in kinetic energy is the work 
done by gravity, 

W g = −mg( y f − y0 ) 
(13.6.2) 

= (−2.0 ×10−1 kg)(9.8 m ⋅s-2 )(5 m −15 m) = 2.0 ×101 J. 

The ball started from rest, vy ,0 = 0 . So the change in kinetic energy is 

1 1 2 1 2ΔK = mv 2 − mv = mv . (13.6.3)y , f y ,0 y , f2 2 2 

We can solve Equation (13.6.3) for the final velocity using Equation (13.6.2) 

v y , f = 
2ΔK 

m 
= 

2W g 

m 
= 

2(2.0 ×101 J) 
0.2 kg 

= 1.4 ×101 m ⋅s-1 . (13.6.4) 

For the falling ball in a constant gravitation field, the positive work of the gravitation 
force on the body corresponds to an increasing kinetic energy and speed. For a rising 
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    13.6 Work-Kinetic Energy Theorem 



  

         
 

 
  

 
          

           
          

        
 

 
          

        
 

 
  

  

 
 

 

 
  

  

 
        

 

 
  

  

 
 

 

 
  

  

 
      

 
              

        
   
 
    
 

             
 

body in the same field, the kinetic energy and hence the speed decrease since the work 
done is negative. 

Example 13.7 Final Kinetic Energy of Moving Cup 

A person pushes a cup of mass 0.2 kg along a horizontal table with a force of magnitude 
2.0 N at an angle of 30o with respect to the horizontal for a distance of 0.5 m as in 
Example 13.4. The coefficient of friction between the table and the cup is µk = 0.1. If the 
cup was initially at rest, what is the final kinetic energy of the cup after being pushed 0.5 
m? What is the final speed of the cup? 

Solution: The total work done on the cup is the sum of the work done by the pushing 
force and the work done by the friction force, as given in Equations (13.4.9) and 
(13.4.14), 

W = W a +W f = (F a − µk N )(x f )x − xi . (13.6.5) 
= (1.7 N − 9.6 ×10−2 N)(0.5 m) = 8.0 ×10−1 J 

The initial velocity is zero so the change in kinetic energy is just 

1 1 2 1 2ΔK = mv 2 − mv = mv . (13.6.6)y , f y ,0 y , f2 2 2 

Thus the work-kinetic energy theorem, Eq.(13.6.1)), enables us to solve for the final 
kinetic energy, 

1 2K f = mv f = ΔK = W = 8.0 ×10−1 J . (13.6.7)
2 

We can solve for the final speed, 

v y , f = 
2K f 

m 
= 

2W 
m 

= 
2(8.0 ×10−1 J) 

0.2 kg 
= 2.9 m ⋅s-1 . (13.6.8) 

13.7 Power Applied by a Constant Force 
 

Suppose that an applied force Fa acts on a body during a time interval Δt , and the 
displacement of the point of application of the force is in the x -direction by an amount 
Δx . The work done, ΔW a , during this interval is 

ΔW a = Fx
a Δx . (13.7.1) 

where Fx
a is the x -component of the applied force. (Equation (13.7.1) is the same as 

Equation (13.4.2).) 
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