13.11 Work-Kinetic Energy Theorem in Three Dimensions

Recall our mathematical result that for one-dimensional motion

$$
\begin{equation*}
m \int_{i}^{f} a_{x} d x=m \int_{i}^{f} \frac{d v_{x}}{d t} d x=m \int_{i}^{f} d v_{x} \frac{d x}{d t}=m \int_{i}^{f} v_{x} d v_{x}=\frac{1}{2} m v_{x, f}^{2}-\frac{1}{2} m v_{x, i}^{2} . \tag{13.11.1}
\end{equation*}
$$

Using Newton's Second Law in the form $F_{x}=m a_{x}$, we concluded that

$$
\begin{equation*}
\int_{i}^{f} F_{x} d x=\frac{1}{2} m v_{x, f}^{2}-\frac{1}{2} m v_{x, i}^{2} \tag{13.11.2}
\end{equation*}
$$

Eq. (13.11.2) generalizes to the y - and z-directions:

$$
\begin{align*}
& \int_{i}^{f} F_{y} d y=\frac{1}{2} m v_{y, f}^{2}-\frac{1}{2} m v_{y, i}^{2}, \tag{13.11.3}\\
& \int_{i}^{f} F_{z} d z=\frac{1}{2} m v_{z, f}^{2}-\frac{1}{2} m v_{z, i}^{2} . \tag{13.11.4}
\end{align*}
$$

Adding Eqs. (13.11.2), (13.11.3), and (13.11.4) yields

$$
\begin{equation*}
\int_{i}^{f}\left(F_{x} d x+F_{y} d y+F_{z} d z\right)=\frac{1}{2} m\left(v_{x, f}^{2}+v_{y, f}^{2}+v_{z, f}^{2}\right)-\frac{1}{2} m\left(v_{x, i}^{2}+v_{y, i}^{2}+v_{z, i}^{2}\right) \tag{13.11.5}
\end{equation*}
$$

Recall (Eq. (13.8.24)) that the left hand side of Eq. (13.11.5) is the work done by the force $\overrightarrow{\mathbf{F}}$ on the object

$$
\begin{equation*}
W=\int_{i}^{f} d W=\int_{i}^{f}\left(F_{x} d x+F_{y} d y+F_{z} d z\right)=\int_{i}^{f} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}} \tag{13.11.6}
\end{equation*}
$$

The right hand side of Eq. (13.11.5) is the change in kinetic energy of the object

$$
\begin{equation*}
\Delta K \equiv K_{f}-K_{i}=\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{0}^{2}=\frac{1}{2} m\left(v_{x, f}^{2}+v_{y, f}^{2}+v_{z, f}^{2}\right)-\frac{1}{2} m\left(v_{x, i}^{2}+v_{y, i}^{2}+v_{z, i}^{2}\right) . \tag{13.11.7}
\end{equation*}
$$

Therefore Eq. (13.11.5) is the three dimensional generalization of the work-kinetic energy theorem

$$
\begin{equation*}
\int_{i}^{f} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}=K_{f}-K_{i} . \tag{13.11.8}
\end{equation*}
$$

When the work done on an object is positive, the object will increase its speed, and negative work done on an object causes a decrease in speed. When the work done is zero, the object will maintain a constant speed.

13.11.1 Instantaneous Power Applied by a Non-Constant Force for Three Dimensional Motion

Recall that for one-dimensional motion, the instantaneous power at time t is defined to be the limit of the average power as the time interval $[t, t+\Delta t]$ approaches zero,

$$
\begin{equation*}
P(t)=F_{x}^{a}(t) v_{x}(t) . \tag{13.11.9}
\end{equation*}
$$

A more general result for the instantaneous power is found by using the expression for $d W$ as given in Equation (13.8.23),

$$
\begin{equation*}
P=\frac{d W}{d t}=\frac{\overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}}{d t}=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{v}} . \tag{13.11.10}
\end{equation*}
$$

The time rate of change of the kinetic energy for a body of mass m is equal to the power,

$$
\begin{equation*}
\frac{d K}{d t}=\frac{1}{2} m \frac{d}{d t}(\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}})=m \frac{d \overrightarrow{\mathbf{v}}}{d t} \cdot \overrightarrow{\mathbf{v}}=m \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{v}}=P . \tag{13.11.11}
\end{equation*}
$$

where the we used Eq. (13.8.9), Newton's Second Law and Eq. (13.11.10).

MIT OpenCourseWare
https://ocw.mit.edu

8.01 Classical Mechanics

Fall 2016

For Information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

