Retirement/Replacement Problems

March 15, 2004

Nuclear Energy Economics and Policy Analysis

Why consider replacing a physical asset?

- Physical impairment
- Economic obsolescence

Determining optimum economic lifetime under steady-state conditions

Nuclear Energy Economics and Policy Analysis

Optimum economic life calculation (contd.)

Two alternative decision criteria for choosing optimal retirement age:

(1) Minimize levelized annual cost, LAC

LAC = I₀ (A/P,20%, N) Š I_N (A/F, 20%, N) + 2000 + 1000 (A/G,20%, N)

(2) Minimize present worth of net receipts, PW

PW = -I_o + I_N (P/F, 20%, N) + R (P/A,20%, N) Š 2000 (P/A,20%, N) Š1000(P/G,

<u>N</u>	LAC	PW (net receipts)
1	10800	-2118
2	8273	-18
3	7405	1795
4	7062	3101
5	<u>6958</u>	3898
6	6976	4273
7	7060	<u>4326</u>
8	7181	4143

Question: Which one of the two criteria gives the correct result?

Retirement of asset in a changing environment

Example:

<u>NDefenderÓ</u>

Bought 3 yrs ago for \$1700 Expected life at that time = 10 yrs NSV=0 Levelized operating cost for remaining 7 years = \$281/yr Market value today = \$1000

> <u>Assume:</u> Weighted average after tax cost of capital = 10% Marginal tax rate = 50%

Question: Should we replace the defender with the challenger?

<u>NDeter</u> Bough

<u>NChallengerÓ</u> Purchase price = \$2000 Economic lifetime = 10 years NSV = \$600 Annual operating cost = \$100.yr

5

Retirement of asset in changing environment (contd.)

- Two common mistakes
 - #1: Comparing projects over different time horizons
 - #2: Allowing 'sunk costs' to influence the investment decision

Asset retirement decision: It is helpful to adopt the perspective of an 'outsider'

The outsider's choices: Choice #1 -- Buy the defender for \$1000

Suppose the defender <u>today</u> is expected to have the following economic characteristics over the next several years:

Years to retirement	<u>Salvage Value (I_N)</u>	<u>Operating Cost</u> (levelized)
1	600	220
2	50j0	230
3	400	240
4	300	250
5	200	260
6	100	270
7	0	280

Find the lifetime of the defender for which the levelized annual cost is minimized

 I_{N}

The outsider's choices: Choice #1 -- Buy the defender for \$1000 (contd.)

Find the lifetime of the d efender for which the levelized annual cost is minimized

Convert to modified cash flow diagram

$$LAC_{defender} = -1000 (A / P, x, N) + I_N (A / F, x, N) + \tau \frac{(1000 - I_N)}{N} - M_L (1 - \tau)$$

Ν	LAC defender
3	-301
4	-288
<u>5</u>	<u>-281</u>
6	-287

Nuclear Energy Economics and Policy Analysis

The outsider's choices: Choice #2 -- Buy the challenger for \$2000

Modified cash flow diagram:

Thus we might conclude that the challenger is the preferred choice.

BUT: This would not be correct because we have <u>different time horizons</u> in the two cases.

The outsider's choice (contd.)

- Approaches to achieving consistency in time horizons:
 - Sell the challenger at 5 years
 - Modify the defender scenario by replacing the defender after 5 years with another challenger and selling the latter off after another 5 years (i.e. at the end of year 10)
 - Assume that the defender could be replaced by another 5 year replica of itself