Retirement/Replacement Problems

March 15, 2004

Why consider replacing a physical asset?

- Physical impairment
- Economic obsolescence

Determining optimum economic lifetime under steady-state conditions

Optimum economic life calculation (contd.)

Two alternative decision criteria for choosing optimal retirement age:
(1) Minimize levelized annual cost, LAC

$$
L A C=I_{0}(A / P, 20 \%, N) S I_{N}(A / F, 20 \%, N)+2000+1000(A / G, 20 \%, N)
$$

(2) Minimize present worth of net receipts, PW

$$
P W=-I_{0}+I_{N}(P / F, 20 \%, N)+R(P / A, 20 \%, N) \text { Š } 2000(P / A, 20 \%, N) \text { Š1000(P/G, }
$$

\underline{N}	$\underline{L A C}$	PW (net receipts)
1	10800	-2118
2	8273	-18
3	7405	1795
4	7062	3101
5	$\underline{6958}$	3898
6	7076	4273
7	7181	$\underline{4326}$
8		4143

Question: Which one of the two criteria gives the correct result?

Retirement of asset in a changing environment

Example:

NDefenderÓ
Bought 3 yrs ago for $\$ 1700$
Expected life at that time $=10 \mathrm{yrs}$
NSV=0
Levelized operating cost for remaining 7
years = \$281/yr
Market value today $=\$ 1000$

NChallengerÓ
Purchase price $=\$ 2000$
Economic lifetime $=10$ years
NSV = \$600
Annual operating cost $=\$ 100 . \mathrm{yr}$

Assume:
Weighted average after tax cost of capital = 10\%
Marginal tax rate $=50 \%$

Question: Should we replace the defender with the challenger?

Retirement of asset in changing environment (contd.)

- Two common mistakes
- \#1: Comparing projects over different time horizons
- \#2: Allowing ‘sunk costs’ to influence the investment decision

Asset retirement decision: It is helpful to adopt the perspective of an 'outsider'


```
You
```


The outsider's choices: Choice \#1 -- Buy the defender for $\$ 1000$

Suppose the defender today is expected to have the following economic characteristics over the next several years:

Years to retirement		Salvage Value $\left(\mathrm{l}_{\mathrm{N}}\right)$
		Operating Cost (levelized)
1	600	220
2	50 j 0	230
3	400	240
4	300	250
5	200	260
6	100	270
7	0	280

Find the lifetime of the defender for which the levelized annual cost is minimized
I_{N}

The outsider's choices:
 Choice \#1 -- Buy the defender for $\$ 1000$ (contd.)

Find the lifetime of the d efende r forwhich the levelized annu al cost is minimiz ed

1000

Convert to modified cash flow diagram

LAC defencder

3	-301
4	-288
$\mathbf{5}$	$\mathbf{- 2 8 1}$
6	-287

The outsider's choices:
 Choice \#2 -- Buy the challenger for \$2000

Modified cash flow diagram:

Thus we might conclude that the challenger is the preferred choice.
BUT: This would not be correct because we have different time horizons in the two cases.

The outsider's choice (contd.)

- Approaches to achieving consistency in time horizons:
- Sell the challenger at 5 years
- Modify the defender scenario by replacing the defender after 5 years with another challenger and selling the latter off after another 5 years (i.e. at the end of year 10)
- Assume that the defender could be replaced by another 5 year replica of itself

