Classnote - March 1, 2004

The Levelized Cost of Production and the Annual Carrying Charge Factor

First, define levelized cash flows:

1. Discrete cash flows

Consider the non-uniform cash flow series:

We can define an 'equivalent levelized' cash flow, A_{L}, such that the uniform series PW is equal to the PW of the actual series:

$$
\begin{array}{r}
\square_{n=1}^{N} A_{L}(P / F, i, n)=\square_{n=1}^{N} A_{n}(P / F, i, n) \\
A_{L}=\frac{\square_{n=1}^{N} A_{n}(P / F, i, n)}{\square_{n=1}^{N}(P / F, i, n)}
\end{array}
$$

2. Continuous cash flow rate

\qquad

We obtain, by analogy,

$$
\bar{A}_{L}=\frac{\square_{0}^{T} A_{0} e^{\square r t} d t}{\prod_{0}^{T} e^{\square t} d t}
$$

For the special case of an exponential increase in \bar{A}

$$
\bar{A}_{L}=\frac{\square_{0}^{T} A_{o} e^{(y \square r) t} d t}{\prod_{0}^{T} e^{\square t} d t}=A_{o} \frac{r}{r \square y} \frac{\square \square e^{(y \square r) T} \square}{1 \square e^{\square r T}} \boxminus
$$

And expanding the exponentials as Taylor series and retaining terms through second order, yielding, to first order,

$$
\begin{gathered}
\frac{\bar{A}_{L}}{A_{o}} \square \frac{1 \square \frac{(r \square y)}{2} T+\ldots \ldots}{1 \square \frac{r T}{2}+\ldots} \\
\square 1+\frac{y T / 2}{}
\end{gathered}
$$

Levelized Unit Cost of Product

The lifetime levelized cost, the constant cost that is equivalent in a present worth sense to the relevant time-varying cost, is a useful benchmark for comparisons of facilities which might otherwise be difficult to compare (e.g., windmills versus gas turbines.)

Example - manufacturing facility

Consider a factory with initial investment cost l_{0} at $\mathrm{t}=0$, which operates for N years after which it is salvaged at I_{N}.

Suppose that during this period the factory produces Q_{j} units per year at an annual operating cost of M_{j} dollars per year.

What is the levelized cost of a unit of product - i.e., the uniform cost which, if recovered on every unit produced, will provide lifetime revenues just sufficient to cover all capital and operating costs?

Case I: No Taxes

Write the levelized unit cost, c , as the sum of operating and capital components:

$$
\mathrm{c}=\mathrm{C}_{\mathrm{M}}+\mathrm{c}_{\mathrm{I}}
$$

1. Operating cost component, c_{m}

$$
\begin{array}{r}
\square_{j=1}^{N} c_{M} Q_{j}(P / F, i, j)=\square_{j=1}^{N} M_{j}(P / F, i . j) \\
c_{M}= \\
=\frac{\square_{j=1}^{N} M_{j}(P / F, i . j)}{\prod_{j=1}^{N} Q_{j}(P / F, i, j)}
\end{array}
$$

2. Capital cost component, c_{l}

$1 . \square \frac{I_{N}}{(1+i)^{N}}=\prod_{j=1}^{N} c_{i} Q_{j}(P / F, i, j)$

Define: Average(levelized) production rate Q_{L}

$$
\begin{aligned}
\prod_{j=1}^{N} Q_{L}(P / F, i, j) & =\prod_{j=1}^{N} Q_{j}(P / F, i, j) \\
Q_{L} & =\frac{\prod_{j=1}^{N} Q_{j}(P / F, i, j)}{(P / A, i, N)}
\end{aligned}
$$

andsubstituting for Q_{L} in(1)

$$
\begin{aligned}
c_{1} & =\frac{1}{Q_{L}(P / A, i, N)}\left[I_{0} \square I_{N}(P / F, i, N)\right] \\
& =\frac{1}{Q_{L}}\left[I_{0}(A / P, i, N) \square I_{N}(A / F, i, N)\right]
\end{aligned}
$$

i.e.,
levelizedunit cost $=\frac{1}{\text { levelized productionrate }}\left[I_{0} \square\right.$ capital recoveryfactor $\square I_{N} \square$ sinking fund far

Case II: With Taxes

As before, write $\mathrm{c}=\mathrm{c}_{\mathrm{m}}+\mathrm{c}_{\mathrm{l}}$
Next, transform the cash flow problem into an equivalent tax-implicit problem

And, decomposing into capital and operating components,

Then solve separately for c_{1} and c_{M}.
a. \underline{C}_{M}

$$
\begin{aligned}
(1 \square \square) \square_{j=1}^{N} c_{M} Q_{j}(P / F, x, j) & =(1 \square \square) \square_{j=1}^{N} M_{j}(P / F, x, j) \\
c_{M} & =\frac{\square_{j=1}^{N} M_{j}(P / F, x, j)}{\square_{j=1}^{N} Q_{j}(P / F, x, j)}
\end{aligned}
$$

b. \underline{C}_{1}

$$
(1 \square \square) \square_{j=1}^{N} c_{l} Q_{j}(P / F, x, j)=I_{o} \square I_{N}(P / F, x, N) \square \square \square_{j=1}^{N} D_{j}(P / F, x, j)
$$

For the case of straight line depreciation:

$$
D_{j}=\frac{I_{o} \square I_{N}}{N}
$$

and
$c_{l}=\frac{1}{1 \square \square} \frac{\square}{\square}$
as before,define a levelized production rate, Q_{L}

$$
Q_{L}=\frac{\square_{j=1}^{N} Q_{j}(P / F, x, j)}{\prod_{j=1}^{N}(P / F, x, j)}=\frac{\square_{j=1}^{N} Q_{j}(P / F, x, j)}{(P / A, x, N)}
$$

And substituting in (2) above

$$
\begin{aligned}
c_{l} & =\frac{1}{(1 \square \square) Q_{L}} l_{0}(A / P, x, N) \square I_{N}(A / F, x, N) \square \square \frac{I_{0} \square I_{N} \square}{N} \\
& =\frac{I_{0}}{Q_{L}} \frac{1}{\square \square}(A / P, x, N) \square \frac{\square}{N} \frac{I_{N}}{I_{0}} \frac{I_{N}}{I_{0}}(A / F, x, N) \\
c_{I} & =\frac{I_{0}}{Q_{L}} \square
\end{aligned}
$$

where $\bar{\square}$, the term in square brackets, is the annual carrying charge factor (with units of yr^{-1})

Notes

1. I_{o} is the PW of the initial investment at the start of operation.
2. In a tax-free environment $(\square=0)$, the annual carrying charge factor \square reduces to the capital recovery factor, adjusted for NSV.
3. In the limit of large $N(N \rightarrow \quad)$

$$
\begin{aligned}
& (A / P, x, N)=\frac{x(1+x)^{N}}{(1+x)^{N} \square 1} \square x \\
& (A / F, x, N)=\frac{x}{(1+x)^{N} \square 1} \square 0 \\
& \square \square \square=\frac{x}{1 \square \square}
\end{aligned}
$$

This is a good approximation for large N .
4. The form of the annual capital charge factor in equation (3) applies to the case of straight-line depreciation. Equivalent expressions can be derived for other depreciation schedules.

