Massachusetts Institute of Technology 22.68J/2.64J Superconducting Magnets

May 1, 2003

1

Lecture #9 – AC Losses
≻AC Losses
≻Joint Losses

AC Loss Components

- Hysteresis: $P_h \propto \dot{B}_e$
 - Intrinsic to superconductor and because Type II, when exposed to B_e , is in mixed state.
 - Theory agrees reasonably well with experiment.
- Coupling: $P_c \propto \dot{B}_e^2$
 - Joule dissipation of a dB/dt-induced filament-to-filament (intra-strand) coupling current in the matrix metal.
 - Theory well-understood but exact computation not possible because some parameter values are not well known.
 - Inter-strand coupling between composite strands in a cable is particularly difficult to calculate.
- Eddy-current: $P_e \propto \dot{B}_e^2$
 - Joule dissipation of dB/dt-induced current in the resistive matrix metal not occupied by a cluster of filaments.
 - Theory, e.g. problem 2.7, useful.

Parameters Affecting AC Losses

- Critical Properties: J_c (B,T)
- Magnetic field:
 - Bias (DC); amplitude (AC); frequency, phase.
 - Orientation (transverse, parallel, rotating)
- Current:
 - Bias (DC); Amplitude (AC); frequency, phase.
- Composite Material Properties:
 - Resistivity; geometry.
- Multistrand Cables and Braids:
 - Configuration; twist pitches; contact resistances.

Implications for Superconductor Design

- Decrease Hysteresis Loss:
 - Reduce superconductor dimension
 - Many small superconducting filaments
- Decrease Coupling Loss:
 - Twist Wire \rightarrow Twist filaments
 - Reduce twist pitch
 - Reduce wire size
 - Increase transverse resistivity
 - Add internal barriers
- Make Multistrand Cables and Braids:
 - For high current
 - Low AC losses

Relevant Superconducting Wires are Complex Composites

Typical SSC Nb-47wt.%Ti strand (OST manufacture).

Typical reacted ITER Nb₃Sn strand (IGC manufacture).

Field Penetration in a Slab – Bean Model

Fig. III.1. Field and current distribution in a type II superconducting slab of thickness d with external field applied parallel to the slab surfaces.

AC Loss Expressions

Hysteresis

Assumption: Bean-London model applies, i.e., $J_c \neq f(B)$

 H_p – Field required to fully penetrate a slab:

$$H_p = \frac{J_c}{2}d$$

W_h/**V** -Loss per cycle per unit volume:

$$H_{m} \leq H_{p}$$

$$\frac{W_{h}}{V} = \frac{2}{3} \mu_{o} H_{p}^{2} \left(\frac{H_{m}}{H_{p}}\right)^{3}$$

$$H_{m} \geq H_{p}$$

$$\frac{W_{h}}{V} = \frac{2}{3} \mu_{o} H_{p}^{2} \left[3 \left(\frac{H_{m}}{H_{p}} \right) - 2 \right]$$

Simplified AC Loss Expressions

Normalize to full-penetration field loss:

$$\frac{W_o}{V} = \frac{2}{3}\mu_o H_p^2$$

Then:

$$\frac{H_m}{H_p} \le 1,$$
$$\frac{W_h}{W_o} = \left(\frac{H_m}{H_p}\right)^3$$

$$\frac{H_m}{H_p} \ge 1,$$

$$\frac{W_h}{W_o} = \left[3\left(\frac{H_m}{H_p}\right) - 2\right] \quad \text{And for:} \quad \frac{H_m}{H_p} \gg 1, \quad \frac{W_h}{W_o} \approx 3\left(\frac{H_m}{H_p}\right)$$

Field Penetration in a Slab – Kim Model

Fig. III.3. Kim model of field and current distributions in a Type II superconducting slab of thickness d with external field applied parallel to the surface.

Schematic for Magnetization Measurement Using Pick-Up Coils

Technical Type II Superconductors Display a Magnetic Hysteresis

Calorimetric Measurement Method

• Measures vapor boiloff rate, $\dot{\mathcal{V}}$, at room temperature.

$$\dot{\mathcal{V}} = \frac{\varrho(T_b)}{\varrho(293\,\mathrm{K})} \times \frac{Q_{ac}}{h_L}$$

$$\Rightarrow \text{ LHe: } \frac{\rho(T_b)}{\rho(293 \text{ K})h_L} = \frac{749}{(2.6 \text{ J/cm}^3)} = 288 \text{ cm}^3/\text{J}$$
$$\text{LN2: } \frac{\rho(T_b)}{\rho(293 \text{ K})h_L} = \frac{690}{(161 \text{ J/cm}^3)} = 4.3 \text{ cm}^3/\text{J}$$

- \diamond Method generally applicable only to LHe $4.3\,{\rm cm^3/J}$ (LN2) too small for accurate measurement.
- Important variables: pressure; liquid level; flow rate $(\dot{\mathcal{V}})$. \diamond Most important to keep $\dot{\mathcal{V}}$ constant.

Calorimetric Measurement Method

Constant-Flow Calorimeter (Takayasu, Gung, Minervini)

• $\dot{\mathcal{V}}$ kept constant by feed-back controlling Q_{heater} to keep the sum, $Q_{ac} + Q_{heater}$, constant.

Field Penetration in a Slab – Bean Model with Transport Current

$$H_p(I) = \frac{J_c d}{2} \left(1 - \frac{I_t}{I_c} \right)$$
$$i = \frac{I_t}{I_c}$$

$$H_{po} = \frac{J_c d}{2}$$

$$H_p(i) = H_{po}(1-i)$$

Transport current will increase the loss for the same magnetic field change if the $\Delta H > H_p(i)$.

$$\frac{W_o}{V} = \frac{2}{3}\mu_o H_p^2(0)$$

$$\frac{H_m}{H_p(i)} \le 1,$$
$$\frac{W_h(i)}{W_o} = \left(\frac{H_m}{H_p(0)}\right)^3$$

$$\frac{H_m}{H_p(i)} \ge 1,$$

$$\frac{W_h(i)}{W_o} = (1 - i^3) + 3 \left[\left(\frac{H_m}{H_p(0)} \right) - \left(\frac{H_p(i)}{H_p(0)} \right) \right] (1 + i^2)$$

16

$$\frac{H_m}{H_p(i)} \le 1 \quad \text{or} \quad \frac{H_m}{H_p(0)} \le (1-i),$$

$$\frac{W_{h}(i)}{W_{o}} = \frac{W_{s}(i)}{W_{o}} + \frac{W_{t}(i)}{W_{o}} = \left(\frac{H_{m}}{H_{p}(0)}\right)^{3}$$

Total Loss

Where

$$\frac{W_s(i)}{W_o} = \left(\frac{H_m}{H_p(0)}\right)^3$$
$$\frac{W_t(i)}{W_o} = 0$$

Shielding Loss

Transport Loss

$$\frac{H_m}{H_p(i)} \ge 1$$
 or $\frac{H_m}{H_p(0)} \ge (1-i)$,

$$\frac{W_h(i)}{W_o} = \frac{W_s(i)}{W_o} + \frac{W_t(i)}{W_o} = (1-i)^3 + 3\left[\left(\frac{H_m}{H_p(0)}\right) - \left(\frac{H_p(i)}{H_p(0)}\right)\right] (1+i^2) \quad \text{Total Loss}$$

Where

$$\frac{W_s(i)}{W_o} = (1-i)^3 + 3\left[\left(\frac{H_m}{H_p(0)}\right) - \left(\frac{H_p(i)}{H_p(0)}\right)\right](1-i^2)$$
 Shielding Loss
$$\frac{W_t(i)}{W_o} = 6\left[\left(\frac{H_m}{H_p(0)}\right) - \left(\frac{H_p(i)}{H_p(0)}\right)\right]i^2$$
 Transport Loss

Bean Model with Transport Current Shielding Loss in a Slab

Bean Model with Transport Current Transport Loss in a Slab

Bean Model with Transport Current Total Loss in a Slab vs Transport Current

Figure 4.3-7. Total hysteresis loss in a slab as a function of transport current with maximum field change as a parameter. These data are the same as that in Figure 4.3-4.

Bean Model with AC Transport Current and Field in Synchronization

current, respectively.

Bean Model with AC Transport Current Terminal Voltage and Transport Current versus Time

Bean Model with AC Transport Current Terminal Voltage as a Function of Transport Current

Bean Model Circular Filament in a Transverse Field

Transverse Flux Penetration into a Circular Superconducting Filament

Figure 4.3-14. Current distribution in a circular filament showing the shielding current region and the transport current region.

Bean Model Circular Filament in a Transverse Field *Numerical Solution*

Bean Model Elliptical Filament in a Transverse Field *Numerical* Solution

Figure 4.3-12 c) Limits of transverse flux penetration into cylindrical filaments of elliptical cross section for different values of the external field change $\Delta H_e/H_p(0)$ along the major axis.

Coupling Losses

Twisting the superconducting filaments in the composite wire is necessary to electrodynamically decouple them

Coupling Losses

31

Effective Matrix Resistivity

After W.J. Carr

$$\rho_{eff} = \frac{1 - \lambda_f}{1 + \lambda_f} \rho_m \qquad \text{Nb}_3\text{Sn}$$
$$\rho_{eff} = \frac{1 + \lambda_f}{1 - \lambda_f} \rho_m \qquad \text{NbTi}$$

 λ_{f} = volume fraction of superconducting filaments ρ_{m} = matrix resistivity [Ω -m]

Coupling Loss Power:

$$\frac{P}{Vol} = \frac{2\dot{B}^2}{\mu_o}\tau$$

AC Losses in Multistrand Cables

Reasons for Making Multistrand Cables:

- Increase current capacity
- Reduce AC and transient coupling losses
- Mechanical rigidity

AC Losses in Cables

Electromagnetic Analysis of AC Losses in Large Superconducting Cables

General Loss Components:

- > Hysteresis (magnetization) in superconducting filaments
- Coupling (intrastrand)
- Eddy (stabilizer)
- Coupling (inerstrand in sub-cables and cable-cable in built-up conductors)

AC Losses

Electromagnetic Analysis of AC Losses in Large Superconducting Cables

AC Losses

Electromagnetic Analysis of AC Losses in Large Superconducting Cables Modeling a >1000 superconducting strand 5 stage cable

AC Losses- General Solution

For an infinitely long helically twisted strand or cable, the physical parameters $\dot{\rho} = 0$ and $\frac{\partial}{\partial z} = 0$. The governing equations (2.21) and (2.22) then reduce to

$$\nabla_T^2 \left(E_{||} + \frac{\rho \dot{\psi}(\tau, \phi)}{r} \frac{\partial}{\partial \phi} \Phi \right) = \mu_0 \frac{\partial}{\partial t} \sigma_{||} E_{||}$$
(4.1)

$$\sigma_{\perp} \nabla_T^2 \Phi = \frac{1}{r} \frac{\partial}{\partial \phi} \left(\rho \dot{\psi}(r, \phi) \sigma_{\parallel} E_{\parallel} \right)$$
(4.2)

Expanding both equations and substituting the second into the first, we obtain

$$\nabla_T^2 E_{||} + \frac{\rho \dot{\psi}}{r} \left[\frac{\rho \dot{\psi}}{r} \frac{\partial^2}{\partial \phi^2} + 2\left(\frac{\partial}{\partial \phi} \frac{\rho \dot{\psi}}{r}\right) \frac{\partial}{\partial \phi} + \left(\frac{\partial^2}{\partial \phi^2} \frac{\rho \dot{\psi}}{r}\right) \right] \frac{\sigma_{||}}{\sigma_{\perp}} E_{||} \\ + \left[\nabla_T^2 \left(\frac{\rho \dot{\psi}}{r}\right) + 2\left(\frac{\partial}{\partial r} \left(\frac{\rho \dot{\psi}}{r}\right) \frac{\partial}{\partial r} + \frac{1}{r^2} \left(\frac{\partial}{\partial \phi} \frac{\rho \dot{\psi}}{r}\right) \frac{\partial}{\partial \phi} \right) \right] \frac{\partial}{\partial \phi} \Phi = \mu_0 \frac{\partial}{\partial t} \sigma_{||} E_{||} \quad (4.3)$$
$$\nabla_T^2 \Phi = \frac{1}{\sigma_{\perp}} \left[\frac{1}{r} \left(\frac{\partial}{\partial \phi} \frac{\rho \dot{\psi}}{r}\right) \sigma_{||} E_{||} + \frac{\rho \dot{\psi}}{r} \frac{\partial}{\partial \phi} (\sigma_{||} E_{||}) \right] \quad (4.4)$$

With a single helicity cable or a multifilamentary strand, the filaments are twisted with one twist pitch of length L_p . This yields $\rho\dot{\psi} = \frac{2\pi}{L_p}r$ which reduces the equations even further to

$$\nabla_T^2 E_{\parallel} + \left(\frac{2\pi}{L_p}\right)^2 \frac{\partial^2}{\partial \phi^2} (\sigma_{\parallel} E_{\parallel}) = \mu_0 \frac{\partial}{\partial t} (\sigma_{\parallel} E_{\parallel})$$
(4.5)

$$\nabla_T^2 \Phi = \frac{1}{\sigma_\perp} \frac{2\pi}{L_p} \frac{\partial}{\partial \phi} (\sigma_{||} E_{||}) \tag{4.6}$$

37

CSMC Measured Results

Typical distribution of coupling loss tau for 18 layers x 2-in-hand =36 conductors

20 s dump, 36.8 kA, 6/26/2000

Effective cable coupling time constants vary greatly depending on cable twist pitches, magnitude of Lorentz Force (J x B), surface coating, magnetoresistance, and field magnitude.

CSMC Measured Results

Reduction of AC coupling losses with cycles

- *Thesis:* Cycling affects effective coupling time constant by changes in strand contact pressure distribution and interfacial resistance.
- An important (and often unknown a priori) parameter is the effective transverse conductivity between and among the wires and cable stages.
- A separate lab-scale experimental program is used to determine this parameter.

Pulse Number

Np

Splice (Joint) Losses

Joule Dissipation, G_{sl}

$$\boldsymbol{G}_{sl} = \boldsymbol{R}_{sl}\boldsymbol{I}_t^2$$

 I_t = Transport current through the joint [A] R_{sl} = Joint Resistance [Ω]

$$R_{sl} = \frac{R_{ct}}{A_{ct}} = \frac{R_{ct}}{al_{sl}}$$

$$\begin{split} R_{ct} &= \text{contact resistance } [\Omega\text{-}m^2] \\ a &= \text{conductor width (joint width) } [m] \\ l_{sl} &= \text{splice length } [m] \end{split}$$

Splice (Joint) Losses

- Surfaces can be in contact under pressure with no solder
 - then contact resistance depends on the surface condition.
 (roughness, surface oxides, etc.)
 - often silver plate.
- Surfaces are often soldered together
 - Some mechanical integrity- but often not too strong.
 - $-R_{ct}$ is usually > $\rho_{solder} \delta_{solder}$ because of contact resistance at solder-copper interface.
 - Best to measure
- Don't overheat joint during soldering because excessive temperature can reduce J_c of NbTi.

Joint Orientation to Field

US CSMC Joint Sample

Stainless steel clamp/ joint box

Nilo alloy wedges

Glidcop

Monel transition pieces

Stainless steel eyeglass piece

Incoloy conduit

PTF Cryostat Sample Plumbing

JA CSMC Butt Joint

JA CSMC Butt Joint

