Overview of LHD

Inside of LHD Cryostat

Major Specifications of LHD

Plasma major radius	3.9 m
Av. plasma minor radius	0.5 – 0.65 m
Plasma volume	20 – 30 m ³
Toroidal magnetic field	3 (4) T
Field period	10
Coil stored energy	0.9 (1.6) GJ

105-0012

Specifications of Helical Coils

Major radius	3.9 m		
Minor radius	0.975 m		
Poloidal pole number	2		
Toroidal pitch number	10		
Electromotive force	5.85 (7.8) MA		
Nominal current	13.0 (17.3) kA		
Coil current density	40 (53) A/mm²		
Central toroidal field	3.0 (4.0) T		
Maximum field in coil	6.6 (9.2) T		
Magnetic stored energy	0.92 (1.64) GJ		
Coil weight	75.24 t /coil		
Cooling mothod	Pool boiling of LHe		
Cooling method	(P. Superfluid He)		

Specifications of HC Conductor

Conductor type	Al stabilized Nb-Ti/Cu composite		
Conductor size	12.5 mm x 18.0 mm		
Nominal current	13.0 (17.3) kA		
Superconductor	Nb-Ti/Cu compacted strand cable		
Critical current	21 kA (@ 7 T, 4.4 K)		
Nb-Ti <i>J_c</i>	1360 A/mm ²		
Stabilizer	Pure aluminum (5N)		
Clad material of Al	Cu-2%Ni		
Mechanical reinforcement	Half-hard copper		
Assembling method	E. B. welding		
Surface treatment	Oxidized copper		
Cooling method	Pool boiling		

Windings of Helical Coils

# coil blocks	3		
# lavors	20		
# layers	(H-I:8, H-M,-O:6)		
# total turns	450 (150 x 3)		
Stress	< 100 MPa		
Recovery current	> 13 kA		

Specifications of Poloidal Coils

Coil	IV	IS	OV	
Cooling method	Forced flow of SHe			
Center diameter (m)	3.6 5.64 11.			
Height (m)	0.47	0.47	0.54	
Total weight (t)	16	25	45	
Magnetomotive force (MA)	5.0	4.5	4.5	
Stored energy of a single coil (MJ)	68 104 25 ⁷			
Flow path length (m)	170	230	314	
Inlet pressure (MPa)	1.0 (U. PC) / 0.8 (L. PC)			
Inlet temperature (K)	4.5			
Flow rate per path (g/s)	3.3	2.8	3.6	
Pressure drop (MPa)	0.1	0.1	0.1	

Winding Machine for Poloidal Coils

Coil	IV	IS	OV
Number of pancakes	16	16	16
Number of turns /layer	15	13	9
Total turns	240	208	144
Conductor length (km)	2.7	3.7	5.0

Winding Structure of Poloidal Coils

Cross-Section of PC Conductors

Specifications of PC Conductors (1)

Conductor	IV	IS	OV		
Туре	Cable in c	Cable in conduit conductor (CICC)			
Superconductor		NbTi/Cu			
Operating current (kA)	20.8 21.6 31.3				
Critical current (kA)	62.4	64.8	93.9		
Maximum field (T)	6.5	5.4	5.0		
Conduit material	Stainless steel 316L				
Conduit size (mm)	23.0 x 27.6	23.0 x 27.6	27.5 x 31.8		
Conduit thickness (mm)	3.0	3.0	3.5		
Void fraction (%)	38				
Number of strands	3x3x3x3x6=486				

Specifications of PC Conductors (2)

Conductor	IV	IS	OV
Strand diameter (mm)	0.76	0.76	0.89
Cu/SC ratio of strand	2.7	3.4	4.2
Filament diameter (mm)	15	12	14
Filament twist pitch (mm)	10	8	10
Cabling pitch (mm)			
1st stage	60	60	70
2nd stage	100	100	120
3rd stage	150	150	170
4th stage	220	220	250
5th stage	400	400	400

LHD PF Coil

Cryostable

2. CICC: NHMFL 45-T Hybrid Magnet

Maximum on -axis field	45 T
On-axis field contribution by resistive magnet	31 T
On-axis field contribution by SCM	14 T
Maximum field on axis ŠSCM only	15.4 T
Maximum stored energy	115 MJ
Clear bore Š combined System	32 mm
Clear bore Š SCM only	616 mm
Field center to cryostat top	1.2 m
Cryostat height	2.8 m
Cryostat outer diameter	2.5 m
Resistive magnet housing height	3.6 m
Resistive magnet and housingm ass	8 t
Total cold mass (SCM; magnet vessel; leads)	14 t
Total magnet mass (resistive and super conducting)	36 t
Minimum charging time to full field	1 hour
Typical cooldown time	7 days

45-T Hybrid Magnet Specifications

Superconducting Magnet—Coils A, B, C

Courtesy of John R. Miller (NHMFL)

Configuration	3 series-connected subcoils		
Operating current (kA)	10 ^a (11) ^b		
Coil c haracteristics	Coil A	Coil B	Coil C
Type of windings	layer	layer	pancake
Conductor type	Nb ₃ Sn CICC	Nb ₃ Sn CICC	NbTi CICC
Number of turns	306	378	1015
	(6 layers x	(7 layers x	(29 pancakes
	51/layer)	54/layer)	×35/pancake)
Conductor length (m)	768	1195	4534
Windingi.d.(mm)	710	908	1150
Windingo.d.(mm)	888	1115	1680
Windingheight (mm)	869	868	992
J _{windingpack} (A/mm ²)	39.6 a	44.3 a	38.6 a
	(43.6) b	(48.7) b	(42.4) ^b
Field contribution (T)	3.26 a	3.58 a	7.38 a
(individual coils)	(3.59) b	(3.94) ^b	(8.12) ^b
Field contribution (T)	14.22 ^a (15.64) ^b		
Inductance (H)	1.96		
Stored energy (MJ)	97.9 ^a (118.4) ^b		

Parameters of Coils A, B, and C

a Normal operation of outsert combined with insert

^b Upset following an insert trip or operation of outsertalone

Cryostable

3. Reinforced Composite & Forced-Flow Cryogen: LHC CMS Magnet*

CMS Solenoid Insertion Tests 13 06 02 K 9000 001

CMS Conductor

Selected Critical Parameters Data and Scaling Laws

✤ Nb-Ti

✤ Nb₃Sn

Y. Iwasa (04/03

MF Nb-Ti/Cu Composite*

Diameter:1.03 mm# Filaments:642Filament dia.:30 μmCu/Nb-Ti:1.1Nb barrier:0.5- μm thick
around each filament

Courtesy of David Frost (SUPERCON, Shrewsbury)

Courtesy of Claude Kohler (ALSTOM, Belfort)

Diameters:	0.50/0.70/0.80/
	0.85/1.00 mm
Filament dias.	: 45/63/72
	76/90 μm
Cu/Nb-Ti:	1.35

MF Nb3Sn—Internal Sn

Courtesy of Shahin Pourrahimi (Superconducting Systems, Inc., Waltham)

Y. Iwasa (04/03/03)

MF Nb3Sn—Internal Sn

Nb barrier

Ta barrier

Diffusion Barrier: Nb or Ta Wire diameter: 1.0 mm Cu/non-Cu ratio: 1.3 Number of modules: 37 # filaments: 20,424 Filament diameter: 2.6 μm

Courtesy of Kunishiko Egawa (Mitsubishi Electric, Sagami)

Scaling Law for Nb-Ti $J_c(B_{max}, T_{op})$

$$J_{c} = J_{0} \left(1 - \frac{B_{\max}}{B_{c2_{0}M}} \right) \left(1 - \frac{T_{op}}{T_{c}(B_{\max})} \right)$$

$$T_{c}(B_{\max}) = T_{c\,0M} \cdot \left(1 - \frac{B_{\max}}{B_{c\,2_{0}M}}\right)$$

where B_{c2_0M} =15 T; T_{c0M} =9.3 K; J_0 = 0.73×10¹⁰A/m²

Scaling Law for Nb3Sn $J_c(B_{max}, T_{op}, \varepsilon_{tot})^*$

$$J_{c}(B_{\max}, T_{op}, \mathcal{E}_{tot}) = \frac{J_{c1}(B_{\max}, T_{op}, \mathcal{E}_{tot})}{1 + \frac{J_{c1}(B_{\max}, T_{op}, \mathcal{E}_{tot})}{J_{0}(T_{op})}}$$

$$T_{c}(B_{\max}, \mathcal{E}_{tot}) = T_{c0}(\mathcal{E}_{tot}) \cdot \left(1 - \frac{B_{\max}}{B_{c2_{0}M}}\right)$$

L.T. Summers, M.W. Guinan, J.R. Miller, and P.A. Hahn, "A model for the prediction of Nb₃Sn critical current as a function of field, temperature, strain, and radiation damage," IEEE Trans. Mag. 27, 2041 (1991).

$$J_{c1}(B_{\max}, T_{op}, \mathcal{E}_{tot}) = C_0(B_{c2}(T_{op}, \mathcal{E}_{tot}))^{-1/2}(1-t^2)^2 b^{-1/2}(1-b)^2$$
$$B_{c2}(T_{op}, \mathcal{E}_{tot}) = B_{c2_0}(\mathcal{E}_{tot})(1-t^2)(1-\frac{t}{3}) \qquad J_0(T_{op}) = J_{c0}(1-t^2)^2$$

$$T_{c0}(\varepsilon_{tot}) = T_{c0M} \left(1 - \alpha |\varepsilon_{tot}|^{1.7} \right)^{1/3}$$

$$B_{c2_0}\left(\varepsilon_{tot}\right) = B_{c2_0M}\left(1 - \alpha \left|\varepsilon_{tot}\right|^{1.7}\right) \quad (\alpha = 900 \text{ for } \varepsilon_{tot} < 0; \alpha = 1250 \text{ for } \varepsilon_{tot} > 0)$$

Nb₃Sn material constant values

Binary Nb₃Sn: B_{c2_0M} =24 T; T_{c0M} =16 K; C_0 =2.22×10¹⁰ AT^{1/2} m²

High Performance Ternary Nb₃Sn :

 B_{c2_0M} =28 T; T_{c0M} =18 K; C_0 =1.16×10¹⁰ AT^{1/2}m²; J_o =3.3554×10¹⁰A/m²

Low Performance Ternary Nb₃Sn :

 B_{c2_0M} =28 T; T_{c0M} =18 K; C_0 =0.9064×10¹⁰ AT^{1/2}m²; J_o =3.3554×10¹⁰A/m²

An Example of Application of the Nb₃Sn Scaling-Law

Courtesy of Makoto Takayasu (MIT/PSFC)

Thermal Shrinkage Differentials

	Young's Modulus		Thermal	Density
	@293 K	@4.2 K	Shrinkage	
	(GPa)	(x10 ⁻³ m/m)	(kg/m^3)
Titanium	115	130	1.5	4400
Low Carbon Steel	200		2.0	
Stainless Steel (304/316)	200	210	2.9	7800
Copper (OFHC)	130	140	3.1	8900
Aluminum Alloy	70	80	4.2	2800
Nb-Ti Cables w. Polyimide Insulation ^{a)}	6	9-11	~5	
Resin-Impregnated Nb ₃ Sn Cables ^{a)}	30	45	3.5–4	

^{a)} Upon loading @80 MPa; depends on cable and insulation parameters.

Courtesy of Joel H. Schultz (PSFC/MIT)

Physical properties of austenitic stainless steels

Stainless steel & temperature	Density	Young's Modulus	Poisson's ratio	Thermal conductivity	Mean thermal expansion	Specific heat	Electrical resistivity
[K]	[kg/m³]	[GPa]		[W/m-K]	[K ⁻¹ 10 ⁻⁶]	[J/kg-K]	[μΩ-m]
AISI 304							
295	7,860	200	0.29	14.7	15.8	480	70.4
77		214	0.278	7.9	13.0		51.4
4		210	0.279	0.28	10.2	1.9	49.6
AISI 316							
295	7,970	195	0.294	14.7	15.8	480	75.0
77		209	0.283	7.9	13.0	190	56.6
4		208	0.282	0.28	10.2	1.9	53.9

Yield Stress & Ultimate Strength for Structural Materials

Matorial	Yield Stress [MPa]			Ultimate Strength [MPa]		
Waterial	RT	77K	4K	RT	77K	4K
316LN Annealed	310	607	815	552	1069	1362
304L Annealed	400	460	550	660	1500	1660
Incoloy 908 Mill Annealed	1075	1189	1227	1433	1664	1892
Incoloy 908 20% Cold Worked	1279		1489	1499		1903
Cu 20% Cold Worked	270	300	330	280	380	450
INVAR 15% Cold Worked	650	950	1150	650	1050	1200
6061-T6 AI	300	360	380	330	440	550
Inconel 718	1080	1280	1370	1310	1640	1850
Ti-6AI-4V	890	1420	1700	960	1500	1770

Alloy	Temperature	Yield	Tensile	Elongation	Modulus
		Strength	Strength		
	K	MPa	MPa	%	GPa
7075-T6	295	502	589	16.9	63.2
	76	589	714	15.8	73.2
	4	648	810	10.1	74.4
7475-T761	295	460	515	17.1	66.3
	76	549	636	17.3	75.3
	4	572	739	15.1	76.4
2219-T87	295	397	475	12.6	67.8
	76	484	597	13.5	76.5
	4	539	711	12.4	77.9
2090-	295	488	528	12.1	74.0
T8E41					
	76	551	640	10.8	76.9
	4	614	727	9.9	84.1

Mechanical Properties of Al Alloys