MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING DEPARTMENT OF NUCLEAR ENGINEERING 2.64J/22.68J Spring Term 2003 May 8, 2003

Lecture 10: Protection & HTS Magnets

- > Key magnet issues vs. T_{op} ; Areas of failure in superconducting magnets
- > Key problems: overheating; high voltage; overstressing; over pressure
- Protection against overheating: self-protecting magnets; normal zone propagation; active protection; detection of quench
- > High voltage driven mode & persistent mode; overstressing
- > Over pressure—bath cooled & CICC
- HTS Magnets & Issues
- > Bi-2223/Ag Data
- > YBCO composite
- \succ J_c (B)data @ 4.2, 10, and 20 K of superconductors
- > 1-D NZP of YBCO: Energy margin & NZP velocity (FSU/NHMFL)
- Stability experiment & simulation of YBCO at 77 K (MIT)
- > 1-D NZP of YBCO: Energy margin & NZP velocity (ORNL)

Key Magnet Issues vs Top

Cost or Difficulty

Areas of Failure in Superconducting Magnets

In the order of decreasing reported incidents.

- > Insulation
- > Mechanical
- > System performance
- > Conductor
- > External system
- > Coolant

Key Quench-Induced Problems

- > Overheating
- > High voltage
- > Overstressing
- > Over pressure

Overheating

Energy Conversion

For a uniform energy conversion over the entire winding, a quench-induced T_{max} will remains <100 K, an upper limit to keep the differential thermal expansion stresses negligible.

Protection Against Overheating

- **1. Self-Protecting Magnets**
- Normal zone propagation speed, U_{nzp}, fast enough to spread normal zone over most of the winding volume from a localized "hot spot" initially created. Specifically, a selfprotecting magnet must satisfy:

$$T_{decay} > \sim \frac{a_2 - a_1}{U_{nzp}}$$

- "Large" magnets are not self-protecting.
- \succ $[U_{nzp}]_{HTS} \iff [U_{nzp}]_{LTS} : HTS$ magnets not self-protecting.

An Example

- $\succ B_0 = 8 \mathrm{T}$
- $\succ E_{mg}=10^6 \,\mathrm{J}$
- ➢ Winding volume=0.06 m³ (~2 ft³)

Winding % Absorbing <i>E_{mg}</i>	<i>T_f</i> [K]	Remarks
100	55	Well below 100 K
50	70	< 100 K
10	130	Barely acceptable
1	580	Unacceptable

Normal Zone Propagation Velocity

Along Wire Axis--No Matrix

$$C_{n} \frac{\partial T_{n}}{\partial t} = \frac{\partial}{\partial z} \left(k_{n} \frac{\partial T_{n}}{\partial z} \right) + \rho_{n} J^{2} \quad \text{(normal state)}$$
$$C_{s} \frac{\partial T_{s}}{\partial t} = \frac{\partial}{\partial z} \left(k_{s} \frac{\partial T_{s}}{\partial z} \right) \quad \text{(Superconducting state)}$$

$$\frac{\partial T}{\partial t} = \frac{\partial T}{\partial z} \frac{\partial z}{\partial t} = -U_{\ell} \frac{\partial T}{\partial z} \qquad (U_{\ell}: \log t)$$

$$(U_{\ell}: \text{ longitudinal velocity})$$

Normal
$$\rightarrow$$
 Superconducting $\rightarrow z$

$$-C_n U_\ell \frac{dT_n}{dz} = \frac{d}{dz} \left(k_n \frac{dT_n}{dz} \right) + \rho_n J^2$$
$$-C_s U_\ell \frac{dT_s}{dz} = \frac{d}{dz} \left(k_s \frac{dT_s}{dz} \right)$$

Assume k_n , k_s , and $d^2T_n/dz^2 \approx 0$ nearz = 0

$$C_n U_\ell \frac{d T_n}{d t} + \rho_n J^2 = 0 \qquad (z < 0)$$

$$k_s \frac{d^2 T_s}{d z^2} + C_s U_\ell \frac{d T_s}{d t} = 0 \qquad (t > 0)$$

$$T_{s}(z) = Ae^{-cz} + T_{op} \qquad C = \frac{C_{s}U_{\ell}}{k_{s}}$$

At
$$z = 0$$
 $T_s(0) = T_c$
 $T_s(z) = (T_c - T_p)e^{-(C_s U_\ell / \frac{k}{s})z} + T_{op}$
At $z = 0$ $k_n (dT_n/dz) = k_s (dT_s/dz)$
 $-\frac{k_n \rho_n J^2}{C_n U_\ell} = -C_s U_\ell (T_c - T_{op})$

$$U_{\ell} = J \sqrt{\frac{\rho_n k_n}{C_n C_s (T_c - T_{op})}}$$

$$\boldsymbol{C}_{s} = \boldsymbol{C}_{n} = \boldsymbol{C}_{0}$$

$$U_{\ell} = \frac{J}{C_0} \sqrt{\frac{\rho_n k_n}{(T_c - T_{op})}}$$

$$\begin{array}{ll} \succ & U_l \propto J \\ \succ & U_l \propto 1/C_0 \implies [U_l]_{hts} << [U_l]_{lts} \end{array}$$

In the presence of normal metal matrix:

$$U_{\ell} = \frac{J_m}{C_{cd} \sqrt{\frac{\rho_m k_m}{(T_{cs} - T_{op})}}}$$

Note that $T_{cs} = T_t$

With $C_n(T)$, $C_s(T)$, $k_n(T)$:

$$U_{\ell} = J \sqrt{\begin{bmatrix} \rho_{n}(T_{cs})k_{n}(T_{cs}) \\ C_{n}(T_{cs}) - \frac{1}{k_{n}(T_{cs})} \frac{dk_{n}(T)}{dT} \Big|_{T_{cs}} \int_{T_{op}}^{T_{cs}} C_{s}(T) dT \end{bmatrix}} \int_{T_{op}}^{T_{cs}} C_{s}(T) dT$$

Note that $T_{cs} = T_t$

1-D "Adiabatic" NZP—Experimental & Simulation Results

Y. Iwasa (05/08/03)

Bi-2223/Ag Tape @ 14 K & 100 A

Experimental

Y. Iwasa (05/08/03)

15

2. Active Protection

"Detect-and-Dump"

- Widely used in large magnets.
- Dissipates most of the stored magnet energy into a "dump resistor" connected across the magnet terminals.
- > A "hot spot" heated only over a "brief" period of current decay.
- > Leads to another criterion for operating current density.

$$L_{mg}\frac{dI(t)}{dt} + [r(t) + R_D]I(t) = 0$$

For $r(t) \ll R_D$:

$$L_{mg}\frac{dI(t)}{dt} + R_{D}I(t) = 0 \quad \Rightarrow \quad I(t) = I_{\varphi} \exp\left(-\frac{R_{D}t}{L_{mg}}\right) \quad \Rightarrow \quad J_{m}(t) = [J_{op}]_{m} \exp\left(-\frac{R_{D}t}{L_{mg}}\right)$$

With
$$g_k = g_d = g_q = 0$$
:
 $A_{cd}C_{cd}(T)\frac{dT}{dt} = \frac{\rho_m(T)}{A_m}I^2(t) \implies C_{cd}(T)\frac{dT}{dt} = \rho_m(T)\left(\frac{A_m}{A_{cd}}\right)J_m^2(t)$
 $\frac{C_{cd}(T)}{\rho_m(T)}dT = \left(\frac{A_m}{A_{cd}}\right)[J_{\varphi}]_m^2 \exp\left(-\frac{2R_D t}{L_{mg}}\right)dt$

$$\int_{T_i}^{T_f} \frac{C_{cd}(T)}{\rho_m(T)} dT = Z(T_i, T_f) \ge \left(\frac{A_m}{A_{cd}}\right) [J_{\varphi}]_m^2 \int_0^\infty \exp\left(-\frac{2R_d t}{L_{mg}}\right) dt = \left(\frac{A_m}{A_{cd}}\right) [J_{op}]_m^2 \frac{L_{mg}}{2R_D}$$

$$Z(T_{i}, T_{f}) \geq \left(\frac{A_{m}}{A_{cd}}\right) [J_{op}]_{m}^{2} \frac{L_{mg}}{2R_{D}} = \left(\frac{A_{m}}{A_{cd}}\right) [J_{\varphi}]_{m}^{2} \frac{2E_{mg}/I_{\varphi}^{2}}{2V_{D}/I_{\varphi}} = \left(\frac{A_{m}}{A_{cd}}\right) [J_{op}]_{m}^{2} \frac{E_{mg}}{V_{D}I_{\varphi}}$$

$$Z(T_{i}, T_{f}) = \int_{T_{i}}^{T_{f}} \frac{C_{cd}(T)}{\rho_{m}(T)} dT$$

$$C_{cd}(T) \qquad \rho_{m}(T) \qquad \frac{C_{cd}(T)}{\rho_{m}(T)} \qquad \frac{C_{cd$$

Г

- Z(T) Functions:
- 1: Ag (99.99%)
- 2: Cu (RRR 200)
- 3: Cu (RRR 100)
- 4: Cu (RRR 50)
- 5: Al (99.99%)

"Protection" Criterion

$$[J_{op}]_{m} \leq \sqrt{\left(\frac{A_{c}}{A_{m}}\right)} \frac{V_{D}I_{op}Z(T_{i}, T_{f})}{E_{mg}}$$

"Cryostable" Criterion

$$[J_{op}]_{cd} \leq \sqrt{\frac{f_p P_{cd} A_m q_{fm}}{\rho_m (A_s + A_m)^2}}$$

Detect-and Dump : Options to improve $[J_{op}]_m$

1. Increase *I*_{op}

- **⊖** Larger conductor; more expensive for given kA-m
- ⊖ Larger current leads--greater heat input
- \ominus Larger ($I \times B$) force
- ⊖ For a given power rating *VI*, higher *I* more expensive
- 2. Increase V_D
 - ⊖ Increased danger of voltage breakdown, particularly > 800 V in helium environment
- 3. Increase $Z(T_f)$
- \ominus Better to keep T_f below ~100 K-150 K
- ⊖ Cu better than Al

4. Reduce E_{mg}

 \ominus Subdivision—common practice with HEP & Fusion magnets

Detection of Non-Recovering Quench

$$V_{1}(t) = L_{1} \frac{dI(t)}{dt} + r(t)I(t) \qquad V_{2}(t) = L_{2} \frac{dI(t)}{dt}$$
$$V_{at}(t) = V_{2}(t) - V_{1}(t)$$
$$R_{2}L_{1} = R_{1}L_{2} \implies V_{out}(t) = -\left(\frac{R_{2}}{R_{1} + R_{2}}\right)r(t)I(t)$$

High Voltage

- Driven mode magnet, i.e., operated with its power supply generally connected, except during a dump.
 - High voltage, i.e., V_D , appears across the magnet terminals.
- Persistent mode magnet, i.e., operated with its power supply removed, except when the magnet is being charged.
 - Terminal voltage is *zero*; high *internal* voltage may be induced.

Persistent Mode Operation

Operation Steps

- 1. With persistent switch (PS) resistive (heater on), energize the magnet.
- 2. Turn off the heater; PS becomes superconducting; slowly bring the supply current back to zero.
- 3. Disconnect the current leads from the magnet terminals.
- 4. Magnet now operates in "persistent mode."

Persistent Mode Operation (Continued)

r(t) represents:

- 1. quench-induced *variable* resistance; may lead to a high internal voltage *OR*
- 2. "small" *constant* resistance by imperfect splices; causes a "slow" field decay (time constant= L_{mg}/r) in NMR & MRI magnets:

$$B(t) = B_0 e^{-(r / M_g)t} \cong B_0 \left(1 - \frac{r}{L_m g} t \right) \qquad \text{(for } L_m g / r << 1 \text{ hr})$$

Internal Voltage In Persistent Mode Magnet

- > No internal voltage in a uniformly (100%) resistive magnet.
- > Internal voltage in a partially resistive magnet.
- Large voltages can occur when a resistive zone confined to a small section.

No internal voltage

Internal Voltage In Driven Mode Magnet

For R_D >> r(t), internal voltage is essentially due to the inductive voltage. The maximum inductive occurs at t =0 and it is equal V_D.

Overstressing

- > Overstressing generally occurs in a multi-coil system.
 - A quench in one coil increases the current in the rest of the coils—this is good for PROTECTION, because this increased current accelerates spreading of normal zones in the rest of the coils by inducing quenches in these coils.
 - This increased current may also cause overstressing in these coils.

Overstressing (& Protection)

Example: 2-Coil System

A quench in Coil 1 induces an extra current in Coil 2.

- 1. Helps spreading out normal zone faster and over a large volume.
- 2. May overstress Coil 2

Protection Circuit for an NMR Magnet

Over Pressure

- In every superconducting magnet system, driven, persistent, in which coolant is cryogen (helium, nitrogen), a quench generally causes generation of vapor within the cryostat, raising the cryostat pressure above a safe limit (no greater than ~ 1/3 atm).
 - Cryostat must be equipped with a relief valve or a "burst" disk to permits a rapid release of the vapor from the cryostat.
- For CICC there is another problem of having to estimate the internal pressure generated in CICC.
 - Conduit thickness and vent line diameter must be sized according to the maximum quench-induced internal pressure.

HTS Magnets & Issues

HTS

BSCCO 2223 currently available as "magnet grade conductor."

- Powder in Ag tube
- **BSCCO 2212** being developed but not easily available.
- YBCO, compared with BSCCO, regarded more promising for electric power devices.
- ➢ MgB2 also regarded promising, because of its low cost.

Bi-2223 High Current Density Wire: Non-Reinforced

Slides 35-39: Based on American Superconductor Corp. Data Sheets

Y. Iwasa (05/08/03)

Bi-2223 High Strength Reinforced Tape

Scaling Ratio, 77K to 4.2K

Y. Iwasa (05/08/03)

1-D NZP in YBCO Composite—Energy Margin & NZP Velocity

Slides 45-51: Based on Justin Schwartz (DOE Meeting July 2002)

Bi2223 tape: Recovery

Y. Iwasa (05/08/03)

Bi-2223 High Current Density Wire: Non-Reinforced

Slides 36-40: Based on American Superconductor Corp. Data Sheets

Y. Iwasa (05/08/03)

$$I_{op}$$
=19 A; I_c =22 A

NZP @ 19 A & 80.6 K

Energy Margin vs. $I/I_c (I_c = 22 A @ 80.6 K)$

NZP Velocity vs. I/I_c

Quench/Recovery Experiment & Simulation

- Bath cooling @77K
- Forced-flow cooling @ 2-3 atm 80-81K

Forced Flow Experimental Setup

NOTE: VERTICAL SCALE IS ≈ 10 TIMES ACTUAL; HORIZONTAL SCALE ≈ ACTUAL

New Forced-Flow Sample Holder

Sample 2: V(I) Plot @77K [$I_c=105A$] [Source-Measured $I_c > 100A$]

Simulation

$$Q = h\Delta T_w = hA_s(T_w - T_f)$$
$$h = kNu/D$$

Re 3000, turbulent flow

$$Nu = 0.023 \,\mathrm{Re}^{0.8} \,\mathrm{Pr}^{0.3}$$

Re < 3000, laminar flow

$$Nu = 3.66 + \frac{0.0668 (D/L) \text{Re Pr}}{1 + 0.04 [(D/L) \text{Re Pr}]^{2/3}}$$

Nitrogen Properties at 2 bar (From Handbook of Cryogenic Engineering, I. G. Weisend, 1998)				
T(K)	(kg/m ³)	Cp(j/kg K)	µ(Pa s)	(W/m K)
83.0	779.9	2079	0.1228°10 ⁻³	0.1247
84.0	8.628	1376	0.5791°10 ⁻⁵	0.849°10 ⁻²

YBCO Samples in a Conduction Cooling Setup

- The sample was mounted between a Kapton-tapeinsulated Cu-block and a G-10 block.
- It was affixed to the first- stage cold-head of a Cryomech GB-37 cryocooler for conduction cooling to about 40 K.
- A copper shield was added around the G-10 block to ensure a better uniform temperature of the tape.
- A heater was affixed to the copper base, and three PRT Thermometers are placed on the YBCO top surface.

Slides 69-78: Based on Winston Lue (ASC2002, August 2002)

Over-Current Pulse Induced NZP

- At each operating current, I_{op} an initial over-current pulse was applied. The transient pulse energy was varied by changing the magnitude, I_p or the duration of the pulse.
- The figures show at T= 45 K, and at an I_{op} of 33.7-A and 2-s over-current pulse duration, an I_p of 117.4 A caused a quench while 116.5 A did not.
- Distinctive normal zone propagation was observed when there was a quench.
- The inserts show the temperatures measured by a PRT at the center of the sample.

Y. Iwasa (05/08/03)

Stability Margins in the Range 45—80 K

$$T_{cs} = T_{op} + \langle T_c - T_{op} \rangle \langle I - I_t / I_{cop} \rangle$$

- To measure the stability margin, the operating current was set near the lowest zone I_c at a particular temperature.
- At the highest recovery pulse current, the V-I product integrated over the initial pulse divided by the zone volume is used to estimate the stability margin.
- The measured stability margins ranged from 16 to 120 J/cm³ as temperature lowers from 80 to 45 K.
- Comparison with the specific heat integrals indicated better fit to T_c than to T_{cs} for the HTS tapes.
- The higher margins measured at lower temperatures are attributed to the higher conduction cooling.

Minimum Propagation Currents

- At 45.4 K, the sample was subjected to an initial overcurrent pulse of 118 A for 2 s while increasing the operating propagation in 1 A steps.
- The figures show recovery at an operating current of 27.4 A and propagation at 28.4 A - a minimum propagation current.
- The initial heat input to zone 4 was about 4.6 J or 350.4 J/cm³
 - about 3 times the stability margin.

Minimum Propagation Current vs. Temperature

- Minimum propagation currents were also determined by extrapolating the velocity versus current plots to zero velocity.
- Minimum propagation currents of 12 to 27 A were observed at 80.8 to 45.4 K.
- The existence of minimum propagation current is thought to be the result of conduction cooling.

NZP Velocity vs. I_{op}

- NPZ always starts from the middle (zone 4) of this sample.
- NZP velocities were found to be increasing linearly with the current.
- No more than 20 mm/s of NZP velocity was measured when I_{op} was set below I_c .
- The outer zones which received better cooing resulted in lower NZP velocity and higher minimum propagation current.

Y. Iwasa (05/08/03)

NZP Velocity vs. Temperature

- NZP velocities were measured at five different temperatures.
- NZP velocities at an operating current of 30.3 A were found at the different temperatures and plotted in the figure.
- NZP velocity vs. temperature shows a similar dependence as the ratio of operating to critical current.

Modified Adiabatic Theories of NZP Velocity

1. Constant material properties (Dresner)

$$v_{A} = \frac{\left(I - I_{mp}\right)}{A \cdot C_{p}} \sqrt{\frac{k\rho}{T_{c} - T_{p}}}$$

2. Variable material properties (Zhao and Iwasa)

$$v_{B} = \frac{\left(I - I_{m p}\right)}{A} \sqrt{\frac{\int_{T_{p}}^{T_{c}} C_{s} dT \left(C_{n} + \frac{1}{k_{n}} \frac{dk_{n}}{dT} \int_{T_{op}}^{T_{c}} C_{s} dT\right)}$$

3. Constant material properties with a different transition temperature (Bellis and Iwasa)

$$v_{C} = \frac{\left(I - I_{m p}\right)}{A} \sqrt{\frac{k_{n}\rho}{C_{n}C_{s}\left(T_{t} - T_{p}\right)}} \qquad T_{t} = T_{cs} + \frac{1}{2}\left(T_{c} - T_{cs}\right)$$

NZP velocities: Experiment & Modified Adiabatic Theories

- Inclusion of a minimum propagation current is necessary to achieve better agreement with the data.
- The agreement of the two Iwasa's theories indicated the validity of a new transition point for HTS,
- Fair agreement is found between the data the modified theory of Iwasa.
ORNL Conclusion

- Stability margins ranged from 16 to 120 J/cm³ as temperature lowers from 80 to 45 K. Comparison with the specific heat integrals indicated better fit to T_c than to T_{cs} for the HTS tapes.
- Distinctive NZP in YBCO was observed at each of the measured temperatures.
- Minimum propagation current as a function of temperature was measured. Its existence is thought to be the result of conduction cooling.
- NZP velocities of no more than 20 mm/s were measured. Velocity vs. temperature data show a similar dependence as the ratio of operating to critical current and agrees with a modified adiabatic theory.