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Collision Operator: Summary

Landau form of operator for collisions of particles of type, a, off particles of type, b.
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Before moving on to transport theory it will be useful to develop some approximate versions of these
operators that will make actual calculations more tractable. We will consider mostly a two-species,
electron-ion plasma with ions having a single charge state. Then the electron collision operator is
the sum of two operators,

Ce = Cei (fe, fi) + Cee (fe, fe)
The electron - ion operator is linear in the electrons and has a very simple form in the limit of

infinite ion mass. The full expression is,
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As me/mi → 0 clearly the first term dominates. Also, the ion distribution function looks like
a delta function, fi (v0) ' niδ (v

0), on the electron velocity scale. In this limit the electron ion
collision operator becomes,
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which is now a completely linear operator. Note that, niZi = ne.
This can be written explicitly in spherical coordinates in velocity space, utilizing the expression,

∂

∂v
= ev

∂

∂v
+
eθ
v

∂

∂θ
+

eφ
v sin θ

∂

∂φ

We then have, ³
I− vv

v2

´
· ∂

∂v
= eθ

1

v

∂

∂θ
+ eφ

1

v sin θ

∂

∂φ

since the tensor
¡
I− vv

v2

¢
projects onto a two-dimensional space perpendicular to v. Taking the
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where 2L is the angular part of the Laplacian operator. With this definition, we can write the
mi →∞ limit of Cei as,

CLei (fe) = νei
v3e
v3
L (fe) (2)
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is the electron-ion collision frequency. This parameter is closely related to the collision time used
in Sigmar & Helander (and also plasma formulary),
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The numbers here appear after we do certain transport calculations. I prefer the original form that
appears in the actual structure of the collision operator, particularly since the transport coefficient
numbers vary from one transport coefficient to the next.

It is often convenient to write L in terms of the pitch angle variable, µ = cos θ, (not to be
confused with reduce mass of previous section) which results in the form,
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We will sometimes absorb the velocity dependence into the collision frequency to write,
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which, of course, has no dependence on the temperature.
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The expression (2) is called the Lorentz approximation to the collision operator. Numerically,

νei ' 0.39× 10−5Zin lnΛ

T
3/2
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= 6.2× 10−5 Zin

T
3/2
e

if we use the canonically agreed upon number for all plasmas of lnΛ = 16.
The main effect of electrons scattering off of ions is angular deflection or diffusion in the pitch

angle variable, µ. There is no energy exchange to this order, as one would expect from an infinite
mass scattering center. To bring in the energy exchange effects which will be important for transport
theory, we must continue the expansion in the mass ratio, me/mi ¿ 1. We now indicate how that
is done and give the result.

First we assume that the ion distribution function is a Maxwellian plus small corrections,

fi = fMi +O (δ)

where the δ ¿ 1 corrections will not be needed, provided there are no ionic flows to order
p
me/mi.

The ion temperature is different from the electron temperature but of the same order. The velocity
variables in equation (1) are scaled according to,
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and equation (1) is expanded to second order in
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me/mi. Thus for the tensor, U,
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The integrals in equation (1) can then be evaluated to give a correction to the infinite mass result
above,

Cei (fe) = CLei (fe) + CEei (fe)
where the order me/mi, correction term,
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physically represents energy exchange between electrons and ions. In spherical coordinates this
part can be expressed in terms of v = |v| alone,
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1 Plasma Conductivity: The Spitzer-Härm Problem

As a first example of transport theory we consider the computation of the conductivity of a fully
ionized plasma, as done originally by Spitzer and Härm. Here we apply a constant electric field
to an infinite homogeneous problem and compute the steady state current. We expect to find a
relation of the form,

J = σE

where σ is the conductivity. This will serve to illustrate the basic ideas of transport theory without
involving the elaborate machinery and algebra required to treat spatial inhomogeneities of plasma
supported by magnetic field.

The governing equation for transport theory is usually taken to be the full Vlasov equation plus
collision operator,
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where one argues that for the problems considered in transport theory the force and inhomogeneity
terms of the Vlasov operator do not affect the collision operator which was, of course, derived for
a homogeneous and force free medium. This should be a good approximation when the time scale
of the transport phenomenon exceeds the correlation time, τ c ∼ ωpe, and the spatial scale exceeds
the Debye length. Excepting the condition resulting from the gyroradius scale for electrons, these
conditions are well satisfied in practise. Furthermore, one can show that the effect of the electron
gyroradius on the collision operator is simply to modify the argument of the Coulomb logarithm,
replacing nλ3D by, nρ

3
e if, ρe < λD. This introduces a negligible error.

For the conductivity problem then reduces to,

− e

m
E · ∂

∂v
fe = Ce(fe) (3)

The electric field, E, is a given constant vector. The object is to solve for the distribution function,
fe, and then to compute the current,

J = −e
Z

d3vvfe (v) (4)

Now the complexities of the collision operator will prohibit solving this in general. Moreover,
the solution in general would not give a linear relation between the current and electric field, as
is implied by the notion of a conductivity. Thus we seek a restricted and approximate solution to
equation (3) that gives a current linear in the field. This is a specific example of the general transport
theory problem, where one finds a set of linear relations between the so-called thermodynamic forces
and their associated fluxes. In the conductivity calculation the “force” is the electric field and the
“flux” is the current, so we have a single coefficient.

From another point of view, transport theory concerns systems near local thermodynamic equi-
librium. By expanding about thermodynamic equilibrium one solves the kinetic equation. Trans-
port coefficients can then be computed and are found to be linearly related to the forces.
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In any case to see how this goes let us first order the two sides of eq.(3). We assume velocity
scales on the order of some thermal velocity so that the left hand side of equation (3) is of order
eE/meve times fe while the right hand side is of magnitude νei times fe. Thus when the electric
field strength is equal to,

ER ≡ mevTeνei
e

(5)

the two sides are equal.
The critical field given in eq.(5) is termed the runaway field since it corresponds to the value

at which collisions cannot restrain the electrons from the accelerating force of the electric field and
they speed up or “runaway” indefinitely. The behavior found from a simple fluid picture in which
collisions produce a dynamical friction force opposing the electron fluid velocity, V,
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¶
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gives a steady state drift velocity when, V ' VD = eE/meνei. This equation says that when the
electric field is of order the runaway field, E ∼ ER, the drift velocity will be of order the thermal
velocity. In fact the kinetic picture is quite different as this critical field corresponds to a complete
breakdown of the fluid description. We will have more to say about this phenomenon at the end of
this section.

In the transport problem we are concerned with situations where the electric field is considerably
smaller than the runaway field. Then the left hand side of equation (3) is of order,

E

ER
¿ 1

with respect to the right hand side and we can use the small parameter, E/ER , to generate a
perturbation theory. Thus we expand the distribution function in powers of E/ER as follows,

fe = f0e + f1e + f2e + · · ·

Inserting into eq.(3) and equating powers of E/ER order by order gives,

Zero Order : Ce(f0e ) = 0 (7)

First Order : Ce(f1e ) = −
e

m
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and so on. In writing equations (7, 8) we have assumed the collision operator is a function of the
electron distribution alone, which is not true if the full electron-ion operator, Cei(fe, fi) is used. To
avoid this difficulty now we simply take the Lorentz limit, equation (2). The implications of this
assumption, physically, will be taken up when we develop the full set of transport equations later
on.

Using this operator the zero order equations, written out in detail, becomes,

0 = CLei
¡
f0e
¢
+ Cee

¡
f0e , f

0
e

¢
5



To solve this first note that without the Lorentz part the solution can be inferred from the H-
theorem to be a Maxwellian,
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where V is the mean or drift velocity of the distribution. If the ion scattering operator is included,
the Maxwellian can still solve the zero order equation but the drift velocity must be zero. Clearly
a finite value drift would introduce angular velocity dependences to the zero order distribution, ḟ0e ,
and would tend to make CLei
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taking the velocity moment of eq.(7) to give,
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which cannot be satisfied unless V = 0. In physical terms scattering of the electrons from the
ions involves a transfer of momentum and will account for the absorption of the momentum input
from the electric field. The zero order equilibrium condition therefore requires that the electrons
be at rest with respect to the ions. The momentum transfer will occur at next order along with
the transport coefficient.

Knowing the zero order distribution, f0e , the first order equation becomes,
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Mathematically, the solution for the first order distribution, f1e , requires inverting the collision
operator. Formally, the solution can be expressed,
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µ
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¶
This will result in contribution linear in the electric field with a nonvanishing first moment. From
the velocity integral in eq.(4) one can evaluate the current and thus the conductivity. It remains
to carry out this operator inversion for specific operators.

Taking the collision operator to be the Lorentz limit for electron-ion collisions, with the bilinear
electron-electron operator evaluated to first order, or linearized, we have,
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This is the problem solved by Spitzer and Härm. One can imagine the complexities of this calcu-
lation by recalling the integro-difierential nature of the like particle collision operator which must
be inverted. Generally, calculations of this accuracy require numerical computations. To illustrate
the procedure without becoming too involved in algebra, we will carry out the calculation using the
Lorentz operator alone. At the end of this section, the consequences of the complete calculation
will be discussed.

Let us pick an electric field vector orientation along the z-axis and use a spherical velocity space
coordinate system accordingly. We then have E · v = Ev cos θ = Evµ„ where µ, is often referred
to as the pitch angle variable. The Lorentz operator of equation (2) can be easily written in terms
of µ, to give our first order equation,
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Since the left hand side is independent of azimuthal angle, φ, so will be f1e , and the φ derivative can
be dropped. The dependence on v is algebraic. We thus have a very simple ordinary differential
equation in the pitch angle variable, µ. This can be solved by the well known technique of expansion
in Legendre polynomials. We write the first order distribution as,
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expand the left side of eq.(9) similarly and utilize the equation,
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to eliminate the differential operator. Then, from the orthogonality of the Legendre polynomials,
the coefficients al, actually functions of velocity, v, result. Here the expansion is rather trivial
since,µ = Pl (µ). The expansion has only one term. The result is,
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The current is now easily computed,
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From this we infer the Lorentz conductivity,

σL =
8√
π

e2n

meνei
(11)

Equation (11) illustrates an important lesson about transport theory. All the parametric depen-
dence of this equation was known already. It could have been written down from a fluid equation
like (6). All the kinetic theory has done is to provide the numerical coefficient. Note, however, that
it is a number greater than four and therefore far from trivial in applications. It is the purpose of
transport theory to provide these numbers. We should mention that not all transport problems are
this simple and more than just numerical coefficients can be found in some cases.

The complete calculation includes the electron-electron collisions and these actually reduce the
conductivity above by almost a factor of two. This may seem surprising since the electron-electron
collisions cannot produce a net friction force or momentum transfer as this result would apparently
imply. What actually occurs is a kind of symbiotic effect where electron self collisions enhance the
momentum transfer to the ions. The numerical factor that results is ∼ .58, which we choose to
represent analytically as ∼ 3π/16.

This gives the Spitzer-Harm answer as,
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This can be expressed very simply in terms of the collision time defined in Sigmar and Helander
(their equation (3.31)),
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to give,

σSH = 2
e2nτ ei
me

which is the formula used in the plasma formulary for expressing the electrical conductivity. This
factor of 2 is interesting but certainly not the effect of electron-electron collisions, which reduces
the conductivity by the factor ∼ 1.72.

Although the calculation is involved, the reason for the reduction of the conductivity from
the Lorentz case can be understood quite simply in physical terms. Note that the first order
distribution, f1e , in equation (10), because of the factor v

4 has very enhanced tails as compared to
the Maxwellian. This is shown schematically in the figure.
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Distribution function for classical resistivity calculation.
These tails result from the reduction of the collisional drag at large velocities, apparent in the v−3

dependence of the Lorentz operator. It is because of these tails that the numerical coefficient in
eq.(11) is so large. Now electron self collisions will try to restore the distribution to a Maxwellian.
They cannot eliminate the antisymmetric perturbation driven by the electric field, but they will
pull down the tails, and thereby reduce the conductivity. Note that all the momentum transfer is
still to the ions, and the velocity integral of the electron-electron collision operator is identically
zero.

Now discuss runaways . . .
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