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1 Probabilistic Treatment of Scattering: The Fokker-Planck Equa-
tion

In our previous study of plasmas in the Vlasov limit (particularly the heuristic derivation in Chap.
6, Sec. 2), it was convenient to interpret the distribution function, f (x,v, t), as a phase space
density. The Vlasov equation describes the evolution of the distribution function resulting from
particles moving along the orbits determined by the self-consistent averaged fields. In this picture,
there is a mapping of phase space through time that is one to one. For each phase space point
(x,v) and time, t, there corresponds a unique point (x0,v0) at time t0 from which that particle
originated. One has deterministic, reversible dynamics, albeit complicated in general.

Often we need to treat processes which are statistical in nature, either because we lack precise
knowledge, or because we do not want to describe the’microscopic level on which the process is
deterministic. Collisions are an example of the later situation where the interaction potential is
known and one has, microscopically, just a complicated many body problem that is solvable exactly,
in principle. In practise when treating macroscopic systems it is often preferable to describe the
system on a larger scale where the microscopic binary encounters are not followed in detail but give
rise to a statistical process - collisions. In fact the term “collision” implies a statistical description
of this situation.

In any event on this level on description collisions and other scattering processes introduce a
random, or probabilistic, nature to the particle orbits. A given phase space point does not have a
unique mapping through time but rather a probability of arriving in a certain phase space volume at
some later time. Here the probabilistic interpretation of the distribution, f , as an expected number
of particles per unit phase space volume, is essential. This more general probabilistic situation is
illustrated in Fig. (14.1.1) to be contrasted with Fig. (6.2.1) for the Vlasov plasma.
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Evolution of phase space with scattering present. Arrows depict possible paths. The dotted path
suggests the route followed by a particle undergoing a collision between t−∆t and t.

In fact the actual case with collisions is very complicated because collisions, at this level of
description, are virtually instantaneous jumps in velocity, v, at a fixed spatial position, x, which can
not really be diagrammed as paths. The dotted path in Fig. (14.1.1) shows a trajectory suggesting
an intervening collision intersecting another trajectory even though no interaction between the
paths has occurred. Actually the colliding particle has jumped instantaneously from (xi, vi) to
(xj , vj), thereby avoiding the intersecting path.

In any event, for this general probabilistic evolution the basic conservation law determining the
distribution, f , is the Chapman-Kolmogorov Equation,

f (x,v, t+∆t) =

Z
d3∆xd3∆vP∆t (∆x,x−∆x;∆v,v−∆v) f (x−∆x,v−∆v, t) (1)

where,

1 =

Z
d3∆xd3∆vP∆t (∆x,x;∆v,v) (2)

Here P is a transition (or conditional) probability that a particle is at point (x,v) at time t+∆t,
given that it was at point (x−∆x;v−∆v)at time t. Equation (1) should, in a sense, be self-evident
since it is equivalent to the well known rule for the conditional probability. In the conventional nota-
tion of probability theory, the conditional probability would be denoted P∆t (x,v | x−∆x,v−∆v)
and the sum, or integral would run over initial states x−∆x,v−∆v. The notation of eq. (1), for
reasons that will be clear shortly, is chosen to give explicit functional dependence on the magnitude
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of the jump ∆x,∆v. Equation (2) states that all particles end up somewhere (with probability
1), irrespective of the initial phase space position (x,v), so that the scattering process conserves
particles. It is written such that the starting point, (x,v), is fixed and the sum runs over all possible
jumps, ∆x,∆v.

Note that the Chapman-Kolmogorov equation does not, in general, give a complete description
of the system, since P is unspecified and may depend on auxiliary functions in addition to the
distribution function, f . Thus eq. (1) must be augmented by equations or conditions determining
the transition probability.

Note also that the Chapman-Kolmogorov equation reduces to the Vlasov equation in a singular
limit where the conditional probability is taken to be a delta function along the self-consistent
Vlasov trajectory, or characteristic,

P → δ
¡
x−∆x− x0 (x,v, t+∆t; t)

¢
δ
¡
v−∆v− v0 (x,v, t+∆t; t)

¢
(3)

Using eq.(3) in (1) gives f (x,v, t+∆t) = f (x0,v0, t), which is essentially eq. (6.2.4), since the
volume elements d3xd3v and d3x0d3v0 are equal. This is the integral form of the Vlasov equation,
expressing the constancy of f along particle orbits. The differential form is recovered by taking
∆t → 0 as outlined in chapter 6.2. This shows that the Chapman-Kolmogorov equation doesn’t
necessarily imply irreversible dynamics since it contains the Vlasov equation as a limiting case. In
general, however, for smooth, non-singular conditional probabilities, irreversibility will be implied
by eq. (1).

We now specialize to a homogeneous plasma and drop the spatial variable from eqs. (1) and
(2). The basic equation is then

f (v, t+∆t) =

Z
d3∆vP∆t (∆v,v−∆v) f (v−∆v, t) (4)

with

1 =

Z
d3∆vP∆t (∆v,v) (5)

It should be clear that the results can be generalized to include spatial scattering, as we will
consider later in this chapter. For the present we have in mind velocity scattering due to Coulomb
collisions and wish to reduce eq. (4) to a simpler form for such a system. In taking eq. (4) with
a smooth probability, P, we are implicitly taking the coarse grained or macroscopic description of
collisions as a stochastic process. We do not look on the microscopic (Klimontovich) phase-space
and time scales where collisions are a reversible part of the many body trajectory resulting from
two particles coming close together in their mutual Coulomb fields. By removing this fine scale
information from the system, one gets a relatively simple description of collisions which can exhibit
irreversible behavior.

Coulomb interactions are characterized by an infinite range of interaction, so that small angle
(or small ∆v) scatterings dominate the scattering process. These lead to the point we discussed
heuristically at the very beginning of this text, namely the divergence of the cross section and
associated required cutoffs giving the so-called Coulomb Logarithm. This property of Coulomb
scattering implies that the transition probability P∆t (∆v,v−∆v), will be strongly peaked as a
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function of the first argument about small ∆v. In particular, if the distribution function, f , is
relatively smooth with a characteristic scale on the order of the thermal velocity, vT =

p
2T/m,

we expect P to be concentrated with respect to its first argument in a region, ∆v¿ vT . The
second argument of P , namely, v−∆v, the particle velocity before the collision, is expected to have
smooth scales, of order vT as we will verify shortly. These properties suggest that the distribution,
f and the second argument of the probability, P in the integrand of eq. (4), be Taylor expanded
in powers of ∆v. If we also assume f has a characteristic time scale longer than ∆t and expand
accordingly (a more precise identification of the time scale condition will be determined below),
there results,

f (v, t) +∆t
∂f

∂t
(v, t) =

Z
d3∆v{P∆t (∆v,v) f (v, t)−∆v ·

∂

∂v
(P∆t (∆v,v) f (v, t))

+
1

2
∆v∆v :

∂2

∂v∂v
(P∆t (∆v,v) f (v, t)) + . . . } (6)

The first terms on both sides cancel by virtue of eq. (5). The ∆v integrals can then be brought
inside the v derivatives, so that (6) becomes,

∂f

∂t
(v, t) = −

∂

∂v
·

½
f (v, t)

Z
d3∆v

∆vP∆t (∆v,v)

∆t

¾
+
1

2

∂2

∂v∂v
:

½
f (v, t)

Z
d3∆v

∆v∆vP∆t (∆v,v)

∆t

¾
(7)

It is often convenient to denote the integrals over P by angular brackets and to define the
coefficients of friction,

A ≡
1

∆t

Z
d3∆vP∆t (∆v,v)∆v ≡

¿
∆v

∆t

À
(8)

which is a vector and diffusion,

D ≡
1

2

1

∆t

Z
d3∆vP∆t (∆v,v)∆v∆v ≡

1

2

¿
∆v∆v

∆t

À
(9)

which is a tensor.
With these definitions, equation (7)can be written,

∂f

∂t
= −

∂

∂v
· (Af) +

∂2

∂v∂v
: (Df) (10)

which is the standard form of the Fokker-Planck equation.
Do we have an irreversible equation at this point?
This is a very important feature to understand as we develop statistical theories. Certainly

collisions conjure up notions of irreversibility. We have discussed this issue at length already and
the reader may have assumed that such a statistical theory is irreversible. But statistics do not
imply irreversibility as we know from the Vlasov equation. And then if equation (10) is irreversible
where in the preceding developements was it put in?
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The first question has been answered already really, since we know equation (10) contains
the Vlasov equation as a special case. One should recognize that the Fokker-Planck equation,
per se, needn’t give irreversible behavior. If we had used the singular probability of eq. (3) to
compute the coefficients, the diffusion tensor, D, would have been found to be zero and A =
− q

m

¡
E+ 1

cv × B
¢
, so that eq. (10) would have reduced to the homogeneous Vlasov equation. In

this case the terminology friction would not really be appropriate.
Of course, in the present chapter, we have in mind friction and diffusion coefficients that are

due to collisions and the equation is irreversible. The friction term represents a slowing down, or
drag, on particles due to collisions, and the diffusion term produces a spreading of the distribution
function. But we still want to know where the irreversibility was put in. The interested student
might attempt to answer this question for himself at this point. We will return to it in the text
shortly.

Now one might ask why the expansion in ∆v/vT in eq. (6) was stopped after second order or
why the second order term was retained at all since the first order term is presumably the biggest.
It turns out, as we will show in the next section, that the retained terms are of the same order
- actually divergent and requiring the introduction of cutoffs to give terms that are large in the
Coulomb logarithm. The third and higher order terms are not divergent and therefore smaller
by a factor of order the Coulomb logarithm than the retained terms. The Fokker-Planck equation
consists of the “dominant” terms in the relaxation of a quiescent plasma when lnΛ ≡ ln

¡
nλ3D

¢
À 1.

The expansion in ∆t
f

∂f
∂t ¿ 1 is made possible by the very short time that characterizes the

retention of correlation by particles undergoing a collision. The correlation will persist for time on
the order of the interaction time, or τ c ' λD/vT , where λD, the Debye length, is the approximate
range of interaction. Thus the transition probability, P∆t (∆v,v), will be meaningful only for
time intervals ∆t & τ c ' 1/ωp. For intervals less than this, P and the moments


∆v
∆t

®
,

∆v∆v
∆t

®
would exhibit fluctuations corresponding to the individual collisions and signifying the failure of a
probabilistic treatment of collisions on so short a time scale.
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Behavior of the friction coefficient showing fluctuations prior to the correlation time, τ c.
When the limit of small ∆t is taken in eq. (6) then, we are restricted by ∆t & τ c to insure validity of
the probabilistic description. This is a limit to the accuracy imposed by the statistical description
of collisions. It prohibits going to the limit, ∆t → 0, as one does in deriving the Vlasov equation.
Consequently the neglected terms in equation (6) are finite and there is an unavoidable error. It
is here that irreversibility is introduced. By not allowing ∆t to go to the very small values where
the complex reversibility occurs, and at the same time freezing the evolution of the distribution
function, we remove the linkage between the distribution function and the microscopic dynamics -
giving irreversibility.

Since the time scale of variation of the distribution, f , is characterized by ν−1, the collision
time, the order of approximation involved here is ντ c ' ν/ωp. For electrons this parameter is,

νei
ωpe

=
4πne4 lnΛ

m2ev
3
Te

³ me

4πne2

´1/2
=

lnΛ

4πnλ3D
¿ 1

For the ions it is comparable. For typical fusion plasmas, interstellar gas and magnetospheric
plasmas this is on the order of 10−6 or less. The expansion leading to a first order time derivative
is thus extremely well justified. In denser plasma conditions like the center of the sun, however,
nλ3D, can be of order unity and this description is questionable.

Finally, although we have emphasized the specific properties of Coulomb collisions for the
derivation in this section, the Fokker-Planck equation has a much wider applicability. The essential
points are that the correlation time for the stochastic process be small compared to the time scales
of interest and the jumps in velocity, ∆v, (or some generalized coordinate) be small compared to
the velocity (or other) scales characterizing the distribution function, f .
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2 Fokker-Planck Coefficients for Coulomb Collisions

The Fokker-Planck coefficients due to collisions will have additive contributions from each species
in the plasma. To generalize eq. (10) for a multispecies plasma we define friction and diffusion
coefficients,

Aab ≡ Friction on species a due to collisions with species b

Dab ≡ Diffusion of species a due to collisions with species b

Particle a, the scatteree, is often termed the test particle, while particle b, the scatter, is called
a field particle. A distribution of test particles will evolve in time due to collisions with all possible
field particles, including particles of the same species acting as scatterers. Thus we define a collision
operator, Cab, for collisions of test particles a off field particles b,

Cab (fa, fb) = −
∂

∂v
·
³
Aabfa

´
+

∂2

∂v∂v
:
³
Dabfa

´
(11)

The evolution of the distribution function of a given species due to all collisions is then,

∂fa
∂t

= Ca (fa) =
X
b

Cab (fa, fb)

where the full operator is denoted by a single subscript.
We now evaluate the friction coefficient Aab by considering a given labeled particle, a, the test

particle, colliding with a background distribution of field particles, b, as depicted in the figure.

Schematic of test particle a scattering from a distribution of field particles, b.

Take a large number of field particles, all having the same velocity v0, but distributed in space.
In a frame moving at velocity v0, one has the situation in the figure, where, ui = v − v0, is the
relative velocity between the test particle and all the field particles before any collision has occurred.
The field particles present an effective area, dσ = σ (θ) sin θdθdφ, where σ (θ) is the differential cross
section, for scattering of the test particles, so that in a time ∆t the number of scatters will be,

dNb = dσu∆tfb
¡
v0
¢
d3v0
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When the interval∆t is large compared to the interaction time, τ c ' 1/ωpe, we expect the statistical
average over the conditional probability, P∆t, defining the friction coefficient in eq. (8), to be
equivalent to a single arithmetic sum over the scatters. Thus,

Aab ≡

¿
∆vab
∆t

À
'

Z
dNb

∆vab
∆t

=

Z
d3v0fb

¡
v0
¢ Z

dσu∆vab (12)

and, similarly,

Dab =
1

2

Z
d3v0fb

¡
v0
¢ Z

dσu∆vab∆vab (13)

Expressions (12) and (13) assume that the collisions are statistically independent events, or
that the test and field particles become uncorrelated between individual collisions. This is to be
expected when the interaction time, τ c ' 1/ωpe, is short compared to the time between collisions,
1/ν, a condition that is satisfied when the plasma parameter, nλ3D, is large. In fact one expects τ c
to be of the order of the time for decay of correlation between field and test particle, and accordingly
refer to τ c alternatively, as a correlation time.

This independence assumption is what introduces irreversibility into the problem for the sto-
chastic process of particle scattering. As we saw first in the Landau problem and again in the
formal derivation of the collision operator in Chapter ?, the development of irreversible behavior
from reversible underlying dynamics is a subtle problem, requiring, in the final analysis, some kind
of truly random interference by an external agency. The implications and profundity of this step
were well understood by Boltzmann in his first derivation of the general collision operator in 1876.
He emphasized it as the “STOSSAHLANSATZ”, which in German, means stochastic assumption.

It remains to use the kinematics of Coulomb collisions to evaluate the cross section and velocity
increment. This is most easily done in the center of mass frame for fixed test and field particle
velocities before collision, v and v0, respectively. The center of mass dynamics are easily found
from the individual equations of motion,

ma
d2

dt2
xa = e2ZaZb

xa − xb

|xa − xb|
3 →

·
e2ZaZb
4π²0

xa − xb

|xa − xb|
3

¸
MKS

mb
d2

dt2
xb = e2ZaZb

xb − xa

|xa − xb|
3 →

·
e2ZaZb
4π²0

xb − xa

|xa − xb|
3

¸
MKS

The arrow denotes the same equation written in MKS units. Adding these equations gives,

0 =
d2

dt2
(maxa +mbxb) = (ma +mb)

d2

dt2
XCM (14)

where XCM ≡ (maxa +mbxb) / (ma +mb) is the center of mass coordinate and eq. (14) shows
that the center of mass velocity, VCM ≡ (mava +mbvb) / (ma +mb), is conserved. Note also that
the individual particle coordinate is related to the center of mass coordinate, XCM , by,

xa = XCM +
µ

ma
x
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where, x = xa− xb, is the relative coordinate. By subtracting the equations of motion one obtains
the equation of motion for the relative coordinate,

d2

dt2
x =

ZaZbe
2

µ

x

|x|3
→

·
ZaZbe

2

4π²0µ

x

|x|3

¸
MKS

where µ ≡ mamb/ (ma +mb) is the reduced mass. Thus we have a one-body problem for a particle
of mass µ, scattering from a fixed scattering center. Also,

va = VCM +
µ

ma
u

where u = va − vb is the relative velocity. Since VCM is conserved in the collision,

∆va =
µ

ma
∆u

and the friction coefficient can be expressed in terms of center of mass quantities,

Aab =

Z
d3v0

µ

ma
fb
¡
v0
¢ Z

dσu∆u (15)

To evaluate eq. (15), we need to know the velocity increment, ∆u, and differential cross section
σ (θ) as a function of scattering angle for the center of mass collision depicted in the figure.

Collision in center of mass frame showing trajectory of relative coordinate.
The trajectory in the figure is found by computing the unbounded orbit in a Coulomb field and is
well known from elementary mechanics [2],

tan
θ

2
=
ZaZbe

2

µu2b
→

·
ZaZbe

2

4π²0µu2b

¸
MKS

(16)

Using the relation between impact parameter and cross section, dσ = 2πbdb, and the definition of
the differential cross section, 2πbdb = 2πσ (θ) sin θdθ, one obtains,

σ (θ) =
Z2aZ

2
b e
4

4µ2u4 sin4 14θ
→

"
Z2aZ

2
b e
4

64π²0µ2u4 sin
4 1
4θ

#
MKS

(17)
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which is the Rutherford cross section for Coulomb scattering. This exhibits a strong peak (in fact
singularity) at zero degrees, showing the dominance of small angle scatterings that was the basis
of the Fokker-Planck treatment.

The velocity increment ∆u, can be simply determined from the geometry of the scatter shown
in the figure.

Geometry of the scattering event showing relative velocities before, ui, and after, uf , the collision.
The unit vectors, û and q̂, point in the directions, ui, and ∆u, respectively

Since energy is conserved in the center of mass frame, |ui| =,|uf | the vector, ∆u, bisects the angle,
π − θ, between ui and uf . We thus have the relations,

ψ =
1

2
(π − θ)

∆u = −2q̂q̂ · ui

Writing q̂ in polar coordinates oriented with the z-axis along u, gives,

q̂ = (cosψ, sinψ cosφ, sinψ sinφ)

=

µ
sin

θ

2
, cos

θ

2
cosφ, cos

θ

2
sinφ

¶
The friction coefficient is then expressed as,

Aab = −

Z
d3v0

µ

ma
fb
¡
v0
¢ Z

dφdθσ (θ) 2u2q̂q̂ · û (18)

= −

Z
d3v0

µ

ma
fb
¡
v0
¢ Z

dφb (θ) db (θ) 2u2 sin
θ

2

µ
sin

θ

2
, cos

θ

2
cosφ, cos

θ

2
sinφ

¶
(19)

where the second form has been re-written as an integral over impact parameter. Clearly only the
first component, along u, survives. This could have been expected since scatters perpendicular to
u occur with equal probability in either direction. Evaluating eq. (19) for small angles gives

Aab = −
µ

ma

Z
d3v0fb

¡
v0
¢
2πu u

Z
dbb

θ2 (b)

2
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or, upon use of eq. (16) in the limit θ ¿ 1,

Aab = −
4πZ2aZ

2
b e
4

µma

Z
d3v0fb

¡
v0
¢ u
u3

Z
db

b
(20)

where the last integral is logarithmically infinite. This brings us to a recurring dilemma with the
Coulomb interaction; the divergences that appear at both large and small impact parameters.

Such singularities appear frequently in theoretical physics. They are invariably a signal that
the approximation used is breaking down and the inclusion of some additional physics is required
to resolve the singularity. For example, the singularity at small b corresponds to the presumed
dominance of small angle (large b) scattering throughout the analysis and then integrating over all
b in the end. This can be made finite by simply retaining the full expression for σ (θ), eq. (17), in
eq. (20); one would have an angular, θ, integral converging at θ = π. This would give,Z

db

b
→

1

4

Z π

θmin

dθ
sin θ

sin2 θ
2

= −
1

2

Z π

θmin

dθ sin θ

1− cos θ

=
1

2
ln (1− cos θ)|πθmin ' ln

2

θmin

which is equivalent to cutting off the integral in eq. (20) at bmin = ZaZbe2/T . This is often referred
to as the distance of closest approach since a particle at zero impact parameter would approach
the scattering center to the point where its initial kinetic energy, T , was equal to the potential
energy, e2/bmin, and then reverse, scattering through π radians. This does not completely solve the
problem at small b, however, since one should allow for the finiteness of the jumps in ∆v (which
invalidate a Fokker-Planck description). To emphasize this breakdown of the present description
at small b, we traditionally retain the expression (20) and introduce the cutoff, bmin = ZaZbe2/T .

The singularity at large b is more fundamental since it is associated with the infinite range of
the Coulomb interaction, not the failure of a Fokker-Planck description. In fact, the singularity
appears as θ → 0 and ∆v → 0, where the Fokker-Planck equation becomes the most accurate.
Here, we argue that the potential around a discrete charge in a plasma is not the bare Coulomb
field, but rather the Debye shielded field ≈ exp (−r/λD ) /r with a range of order λD. Specifically,
we introduce the cutoff, bmax = 3λD = 3

p
T/4πne2, in eq. (20) to give,

Aab = −
4πZ2aZ

2
b e
4 lnΛ

µma

Z
d3v0fb

¡
v0
¢ v− v0

|v − v0|3

where,

lnΛ ≡ ln
bmax
bmin

= ln

Ã
3

2

T 3/2

π1/2n1/2ZaZbe2

!
is the Coulomb logarithm. The number Λ is equivalent to nλ3D, the number of particles in a Debye
sphere. For fusion and magnetospheric plasmas, Λ ' nλ3D ' 10

7, so that the Coulomb logarithm
is about 16.
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By a very similar calculation one can obtain the diffusion tensor, Dab. Introducing definition
for the constant involving the Coulomb Logarithm,

Γab =
4πZ2aZ

2
b e
4 lnΛ

m2
a

(21)

our final expressions for the friction and diffusion coefficients become,

Aab = −Γab
µ
1 +

ma

mb

¶Z
d3v0fb

¡
v0
¢ v− v0

|v − v0|3
(22)

Dab =
1

2
Γab

Z
d3v0fb

¡
v0
¢ 1

|v− v0|

µ
I−

(v − v0) (v − v0)
|v − v0|2

¶
(23)

With these formulas as definitions of the coefficients, equation (11) gives the Coulomb collision
operator for the scattering of species a from species b. Please note the Sigmar and Helander use a
different constant. Their, Lab = 4πΓab, is defined to simplify the collision operator written in terms
of Rosenbluth potentials, while ours is written to simplify the Landau form of the operator.

At this point, the Debye cutoff procedure probably raises as many questions as it answers.
If two discrete charges interact at a distance of order λD there are about a million or so other
particles intervening. What makes those two “collide” without hitting the others? How can this
interaction possibly be considered two body, as assumed above, when literally millions of particles
are involved? These questions are subtle and will not be answered in detail here. What one can
say is that each plasma particle, simultaneously, plays two very different roles. It can on the
one hand act independently as a discrete charge while at the same time participating collectively
in the continuous, Vlasovian, response. The collective response accounts for the Debye shielding
while in their independent role the particles undergo scattering. This is the physical interpretation
of the Balescu-Lenard equation derived in Chapter ??, which properly resolves the singularity at
small scattering angles while still having the divergence at large angles. To resolve both small
and large angle divergences in a single equation is a formidable task, which, nonetheless, has been
accomplished by Bernstein and Ahern [ ] to give a completely convergent operator. This operator
takes the form of a Boltzmann equation type operator,

Cab (fa, fb) =

Z
d3v0

Z
dφdθ sin θσ (θ,φ)

¯̄
v − v0

¯̄ ½
fa

µ
v +

µ

ma
∆u

¶
fb

µ
v0 −

µ

ma
∆u

¶
− fa (v) fb

¡
v0
¢¾

(24)
with an effective cross section, σ, that depends on the distribution function. It reduces to the
usual Boltzmann equation for the Coulomb interaction at large angles and to the Balescu-Lenard
equation at small angles. Finally, one can show that the dominant contributions to this collision
integral give the coefficients (22) and (23) for operator (11), with corrections of order unity in
comparison to lnΛ. In this sense the Fokker-Planck equation describes the dominant effects of
Coulomb scattering to an accuracy of order 1/ lnΛ . 5%. A corollary to this is that the precise
numerical factors in Λ are irrelevant since the resulting corrections are comparable to the intrinsic
errors in the operator.
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3 Properties of the Collision Operator: The Landau form and
Boltzmann’s H-Theorem

The collision operator for Coulomb scattering is a very complicated object. Since the friction
and diffusion coefficients are given as integrals over the field particle distribution functions, it is
a nonlinear, in fact bilinear, integro-differential equation. This is not something that is amenable
to analytic solutions, and numerical solutions are made expensive by the field particle integrals.
This makes it essential to establish general properties of the operator to aid in making analytic
expansions and testing numerical solutions. Perhaps more important, because of the length and
complexity of the derivation, it is necessary to establish essential physical properties that lend more
credibility to the operator’s validity.

The last two sections derived the collision operator due to Coulomb collisions in the form of a
Fokker-Planck equation essentially following the derivation first given by Rosen-bluth, MacDonald
and Judd [3]. Actually, the same operator, although in a different form, was derived some twenty
years earlier by Landau 4]. Landau started from the general Boltzmann equation with the Ruther-
ford cross section, (17) and expanded for increments ∆v small compared to the thermal velocity.
This calculation is straightforward and will be left as an exercise to the enterprising student. In the
present section, we derive the Landau form by transforming fhe Fokker-Planck operator, thereby
demonstrating the equivalence of the two operators. The Landau form of the operator is the most
useful for proving the conservation laws for particles, energy and momentum and for deriving the
H-theorem.

We consider then, eq. (11), with coefficients (22) and (23). To obtain the Landau form it is
convenient to define the tensor that appears in the diffusion coefficient,

U
¡
v,v0

¢
≡
1

u

³
I−

uu

u2

´
where, u = v− v0, and u = |u|. One can easily show that the tensor, U (v,v0), has the property,
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Therefore the friction term in eq. (11) can be rewritten as,
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If we also expand the diffusion term to two terms,

∂2

∂v∂v
:
³
Dabfa

´
=

∂

∂v
·Dab ·

∂

∂v
fa +

∂

∂v
·

µµ
∂

∂v
·Dab

¶
fa

¶



14

the first term now being in self-adjoint form, we now notice that the last term can be written,

1
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This cancels the first part of the friction term in equation (26) so that when all terms are combined,
there results,

Cab (fa, fb) =
1

2
Γab

∂
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·
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·
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∂
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¶
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¡
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which is the Landau form for the collision operator. The distribution function arguments to the
collision operator are indicated to emphasize its bilinear nature.

This operator has several very important properties which give it a credibility that transcends
any uncertainties one might have about the derivation. For example, with a one-species plasma,
evolving according to collisions alone,

∂f

∂t
= C (f, f) (27)

The collision operator, C, and the distribution function, f , evolving according to eq. (27), have
the following properties:

(1) Conservation of Particles:
Z
d3vC (f, f) = 0

(2) Conservation of Momentum:
Z
d3vmvC (f, f) = 0

(3) Conservation of Energy:
Z
d3v

1

2
mv2C (f, f) = 0

(4) Positivity: if f > 0 at t = 0, then f > 0 for all times.

(5) TheMaxwellian distribution, fM , is stationary:
∂f

∂t
= 0 = C (fM , fM )

The collision operator annihilates the Maxwellian distribution function.

(6) All solutions approach fM as t→∞. Thus the Maxwellian is the only stationary solution.

The last three properties follow from a theorem stated and proved by Boltzmann:

BOLTZMANN’S H-THEOREM
For a system evolving according to equation ( 27),
The entropy change is POSITIVE INDEFINITE,

dS

dt
≡ −

d

dt

Z
d3vf ln f ≥ 0

The entropy does not change if and only if f becomes Maxwellian.
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In other words, the system evolves in the direction of increasing entropy until the maximum
entropy state (consistent with particle, momentum and energy conservation) is achieved. That the
maximum entropy state is a Maxwellian was proved in Chapter 1. The significance ofeq. (27) is
that it actually evolves the distribution function to this state.

The implications of this collision operator, particularly the H−theorem, deserve emphasis.
From a consideration of the microscopic dynamics in the collision process we have obtained an
equation for the one particle distribution, f . This equation will evolve any initial distribution, in
such a way that the entropy increases monotonically, until the thermal equilibrium, Maxwellian,
distribution is achieved. In a sense, from a microscopic theory, we have derived the second law of
thermodynamics! This cannot, unfortunately, be a “derivation” in the rigorous sense since at some
point chaos from outside the laws of physics must be injected if the microscopic laws of dynamics
are to yield irreversible behavior. There are many objections and paradoxes that can be raised at
this procedure. The crucial step can be examined in detail and made increasingly plausible (as
we found in a related problem in Chapter 6). It can never be proven in a mathematical sense.
Nonetheless, one does have the overwhelming evidence of observation that macroscopic laws do
exhibit this irreversible behavior. In the same manner as with all physical laws, the correctness of
the collision operator can be verified - from experiment. The Stossahlansatz provides the key link
between the microscopic reversible world and the macroscopic irreversible world of of our existence.
Culminating in the famous H−theorem that bears his name, the theory stands as a tribute to the
profundity and creative genius of the man who first made this connection, Ludwig Boltzmann. The
ideas involved were so far in advance of the times in which Boltzmann lived that they engendered
little acceptance and were intensely criticized. Boltzmann never knew they would form a major
branch of modern physics. He died by his own hand a frustrated and depressed man.


