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1. Collisional Guiding Center Scattering: Carry out the calculation of the guiding center
radial scattering operator for Lorentz scattering resulting from the transformation of the
original “velocity scattering at fixed” postion operator. Recall from lecture that the spatial
diffusion operator is (taking the spatial gradients, ∇R, parallel to ex,
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Show that the result is,
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Show also that the gyrophase average velocity scattering operator,
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2. Diamagnetic Flow: Show that the diamagnetic flow computed from expanding the station-
ary Maxwellian distribution of guiding centers about fixed particle position gives,
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In other words show that the separate temperature gradient term integrates to zero.

3. Electron-Ion Temperature Equilibration: Use the guiding center transport theory devel-
oped in class and include the electron-ion energy exchange operator from class notes (modified
slightly!),
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to show that the ordering, me/mi ∼ ρe/L⊥ ∼ E/ER leads to an ill-posed transport theory.
A detailed note is important here: the particle and energy moments of this operator need to
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be zero for any distribution, fe. It is necessary that the collision frequency, νei, go to zero at
small velocities, actually, v < vTi. This detail is critical for these moments, but for very little
else in transport theory, so you can use the simpler form above for the rest of this calculation.
Explain the physical basis of this result.

4. Flux-Friction Calculation of Radial Flux: Consider the momentum moment equation
for electrons using the Lorentz collision operator,

0 ' −∇pe +meΩenV × b+Fei

where Fei is the friction moment of the collision operator,

Fei =

Z
d3vmevCLei (fe)

and we have dropped the slow time and space derivatives of the fluid velocity,V. Now consider
a confinement type geometry where b = ez ,the spatial gradients vary in the ex direction and
the ey direction is homogeneous. For strong magnetic fields, one can compute the diamagnetic
flows in the ey direction from radial, ex, momentum balance, 0 ' −ex ·∇pe+meΩenex ·V×
b = −∂pe/∂x+meΩenVy. You can now evaluate the y-component of the momentum balance
(use a shifted Maxwellian for fe with fluid velocity, Vy, as computed here) to give a Flux-
Friction relation,
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Compute ey ·Fei by including the diamagnetic flow in CLei (fe), and show the the perpendicular
flux that results is identical to that derived in class (and text) for the pressure driven flow.
This is the macroscopic version of the guiding center diffusion flux we talked about in class.

2


