
Fall Term 2003
Plasma Transport Theory, 22.616

Problem Set #2
Prof. Molvig

Passed Out: Sept. 18, 2003 DUE: Sept. 25, 2003

Reading: Chapters 2 & 3 of Sigmar & Helander

1. Equilibration: Section 3.3 in the book considers collisions of test particles with a Maxwellian
field particle distribution. The result in eq. (3.40) of the book involves collision frequencies,
νabs (v) and, ν

ab
k (v) and it is not obvious that a Maxwellian will result for the test particles in

equilibrium. Consider identical field and test particles, so that, ma = mb. Show that actually,
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You may find equations, 3.45-3.48 helpful for this. Now you can write the velocity magnitude
part of the operator as,
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This is now analagous to the 1D example we looked at in lecture, except for the magnetude
of velocity, v, in a 3D velocity space. Show that for, Cv → 0, the distribution goes to a
Maxwellian, f → fM .

2. Fokker-Planck equation accuracy: Considering the Fokker-Planck equation as a Taylor
series expansion, we could continue to higher order as follows,
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where, T, is some rank 3 tensor. Make a simple scaling argument on the coefficients (assuming
the small angle expansion) to show that the terms in T (and higher order terms) are order
unity compared to the divergent, ∼ lnΛ, terms retained in the Fokker-Planck equation.
Estimate from this the inherenet error in the Fokker-Planck operator. You may find some
helpful arguments in the book for this problem.

3. Collision Operator Properties: Prove conservation of mass, momentum, and energy first
for the single species collision operator, and then for a 2 species system consisting of electrons
(subscript, e), and a single species of ions (subscript, i).

4. H-Theorem: Prove the H-theorem as follows:

Show that the rate of change of entropy is given by,
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By appropriate manipulations (integration by parts, reversing dummy variables, etc.) work
this into the expression,
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where, f 0 = f (v0).

Show that, c ·U · c = |u × c|2 /u3 > 0, for any vector, c. It now follows that,
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Why?

dS/dt = 0 if and only if, u × c = 0, and this must hold for all, v and v0. Show then that this
implies, ¡
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and that this implies that f must be Maxwellian, f =const.exp
³
− (v −V)2 /v2T

´
. Here, V,

is some constant, fluid, velocity.

5. Positivity: Show that, f > 0, at t = 0, implies, f > 0 , for all times.
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