Fall Term 2003

Plasma Transport Theory, 22.616
Problem Set \#2
Prof. Molvig

Passed Out: Sept. 18, 2003
DUE: Sept. 25, 2003

Reading: Chapters 2 \& 3 of Sigmar \& Helander

1. Equilibration: Section 3.3 in the book considers collisions of test particles with a Maxwellian field particle distribution. The result in eq. (3.40) of the book involves collision frequencies, $\nu_{s}^{a b}(v)$ and, $\nu_{\|}^{a b}(v)$ and it is not obvious that a Maxwellian will result for the test particles in equilibrium. Consider identical field and test particles, so that, $m_{a}=m_{b}$. Show that actually,

$$
\frac{\nu_{s}^{a b}(v)}{v \nu_{\|}^{a b}(v)}=2 \frac{v}{v_{T}^{2}}
$$

You may find equations, 3.45-3.48 helpful for this. Now you can write the velocity magnitude part of the operator as,

$$
\mathcal{C}_{v} \equiv \frac{1}{2 v^{2}} \frac{\partial}{\partial v} v^{4} \nu_{\|}(v)\left(2 \frac{v}{v_{T}^{2}} f+\frac{\partial f}{\partial v}\right)
$$

This is now analagous to the 1 D example we looked at in lecture, except for the magnetude of velocity, v, in a 3D velocity space. Show that for, $\mathcal{C}_{v} \rightarrow 0$, the distribution goes to a Maxwellian, $f \rightarrow f_{M}$.
2. Fokker-Planck equation accuracy: Considering the Fokker-Planck equation as a Taylor series expansion, we could continue to higher order as follows,

$$
\frac{\partial f}{\partial t}=-\frac{\partial}{\partial \mathbf{v}} \cdot \mathbf{A} f+\frac{\partial^{2}}{\partial \mathbf{v} \partial \mathbf{v}}: \mathbf{D} f+\frac{\partial^{3}}{\partial \mathbf{v} \partial \mathbf{v} \partial \mathbf{v}}: \mathbf{T} f
$$

where, \mathbf{T}, is some rank 3 tensor. Make a simple scaling argument on the coefficients (assuming the small angle expansion) to show that the terms in \mathbf{T} (and higher order terms) are order unity compared to the divergent, $\sim \ln \Lambda$, terms retained in the Fokker-Planck equation. Estimate from this the inherenet error in the Fokker-Planck operator. You may find some helpful arguments in the book for this problem.
3. Collision Operator Properties: Prove conservation of mass, momentum, and energy first for the single species collision operator, and then for a 2 species system consisting of electrons (subscript, e), and a single species of ions (subscript, i).
4. H-Theorem: Prove the H-theorem as follows:

Show that the rate of change of entropy is given by,

$$
\frac{d S}{d t}=-\frac{d}{d t} \int d^{3} v f \ln f=-\int d^{3} v \ln f \mathcal{C}(f, f)
$$

By appropriate manipulations (integration by parts, reversing dummy variables, etc.) work this into the expression,

$$
\frac{d S}{d t}=\frac{1}{2} \Gamma \int d^{3} v d^{3} v^{\prime} f(\mathbf{v}) f\left(\mathbf{v}^{\prime}\right)\left(\frac{\partial}{\partial \mathbf{v}} \ln f-\frac{\partial}{\partial \mathbf{v}^{\prime}} \ln f^{\prime}\right) \cdot \mathbf{U} \cdot\left(\frac{\partial}{\partial \mathbf{v}} \ln f-\frac{\partial}{\partial \mathbf{v}^{\prime}} \ln f^{\prime}\right)
$$

where, $f^{\prime}=f\left(\mathbf{v}^{\prime}\right)$.
Show that, $\mathbf{c} \cdot \mathbf{U} \cdot \mathbf{c}=|\mathbf{u} \times \mathbf{c}|^{2} / u^{3}>0$, for any vector, \mathbf{c}. It now follows that,

$$
\frac{d S}{d t} \geq 0
$$

Why?
$d S / d t=0$ if and only if, $\mathbf{u} \times \mathbf{c}=0$, and this must hold for all, \mathbf{v} and \mathbf{v}^{\prime}. Show then that this implies,

$$
\left(\mathbf{v}-\mathbf{v}^{\prime}\right) \times\left(\frac{\partial}{\partial \mathbf{v}} \ln f-\frac{\partial}{\partial \mathbf{v}^{\prime}} \ln f^{\prime}\right)=0
$$

and that this implies that f must be Maxwellian, $f=$ const. $\exp \left(-(\mathbf{v}-\mathbf{V})^{2} / v_{T}^{2}\right)$. Here, \mathbf{V}, is some constant, fluid, velocity.
5. Positivity: Show that, $f>0$, at $t=0$, implies, $f>0$, for all times.

