22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 8: Effect of a Vertical Field on Tokamak Equilibrium

Toroidal Force Balance by Means of a Vertical Field

1. Let us review why the vertical field is important

- 3. For very short times, the vacuum chamber acts like a perfectly conducting shell: $t \sim 1$ msec.
- 4. On a longer time scale, the fields diffuse through the shell and a vertical field is required for equilibrium.
- 5. Analytic procedure: Assume an external vertical field slowly penetrates a highly conducting shell. The shell then becomes superconducting. We take the limit as the shell moves to infinity: $b \rightarrow \infty$.
- 6. The limit $b \rightarrow \infty$ is nontrivial. To begin, we leave the shell in place.

Influence of the Vertical Field

- 1. B_v causes a shift of the plasma surface with respect to R_0 , the center of the shell.
- 2. The applied vertical field is given by $B = B_V e_Z$

3. Assume B_V scales with the shift Δ . B_V is clearly a component of the poloidal field. Consider

$$\frac{B_{v}}{B_{\theta}} \sim \in, \quad \frac{B_{v}}{B_{0}} \sim \in^{2}$$

4. Write B_V in terms of ψ_v , the vacuum vertical field flux function

a.
$$B_v = B_v e_z$$

 $= B_v [e_r \sin \theta + e_\theta \cos \theta]$
 $\equiv \frac{1}{R_0} \left[\frac{\partial \Psi_v}{\partial r} e_\theta - \frac{1}{r} \frac{\partial \Psi_v}{\partial \theta} e_r \right]$
b. $\Psi_v = R_0 B_v r \cos \theta$

5. The new boundary condition including the vertical field is given by

Solve the Grad–Shafranov Equation Using the Tokamak Expansion to Account for B_v

- 1. Zero order: same as before: radial pressure balance
- 2. First order: same equation as before: $\nabla^2 \psi_1 = ...$ note $\cos \theta$ DEPENDENCE

but with a new boundary condition: $\psi_1(b, \theta) = R_0 B_v b \cos \theta$

3. Let $\psi(r, \theta) = \psi_0(r) + \psi_1(r) \cos \theta \quad \psi_1(b) = R_0 B_V b$

4. The solution for ψ_1 is found as follows:

a.
$$\frac{d}{dr}\left(rB_{\theta}^{2}\frac{d}{dr}\frac{\Psi_{1}}{B_{\theta}}\right) = rB_{\theta}^{2} - 2\mu_{0}r^{2}\frac{dp}{dr}$$

$$b. \quad \psi_1 = \psi_1^{\textit{old}} + \psi_1^{\textit{hom}}$$

 ψ_1^{old} satisfies the equation with B.C. $\psi_1^{old}(b) = 0$

 ψ_1^{hom} satisfies the homogeneous equation with B.C. $\psi_1^{hom}(b) = R_0 B_v b$

5. Homogeneous solution

a.
$$\left(\frac{\Psi_1}{B_{\theta}}\right) = \frac{c_1}{rB_{\theta}^2}$$

b.
$$\psi_1 = c_2 B_{\theta} + c_1 B_{\theta} \int_0^r \frac{dr}{r B_{\theta}^2}$$

c. Choose $c_1 = 0$ for regularity

d.
$$\psi_{1}^{hom} = c_{2}B_{\theta}(r) = \left[\frac{R_{0}bB_{v}}{B_{\theta}(b)}\right]B_{\theta}(r)$$

6. The full solution can be written as

$$\psi_{1}(r) = -B_{\theta} \int_{r}^{b} \frac{dx}{xB_{\theta}^{2}} \int_{0}^{x} \left(yB_{\theta}^{2} - 2y^{2} \frac{dp}{dy} \right) dy + \frac{R_{0}B_{v}b}{B_{\theta}(b)} B_{\theta}(r)$$

7. The new Shafranov shift is given by

a.
$$\Delta_{a} = -\frac{\psi_{1}(a)}{\psi_{0}(a)} = -\frac{\psi_{1}^{old}(a)}{\psi_{0}(a)} - \frac{\psi_{1}^{hom}(a)}{\psi_{0}(a)}$$

b.
$$\Delta_{a} = \Delta_{old} - \left[\frac{R_{0}B_{v}b}{B_{\theta}(b)}B_{\theta}(a)\right]\frac{1}{R_{0}B_{\theta}(a)}$$
$$= \Delta_{old} - \frac{bB_{v}}{B_{\theta}(b)}$$

22.615, MHD Theory of Fusion Systems Prof. Freidberg

Lecture 8 Page 3 of 9 8. Thus

$$\frac{\Delta_a}{b} = \frac{b}{2R_0} \left[\left(\beta_p + \frac{l_i}{2} - \frac{1}{2} \right) \left(1 - \frac{a^2}{b^2} \right) + \ln \frac{b}{a} \right] - \frac{B_V}{B_\theta(b)}$$

9. a. How much vertical field do we need to keep the plasma centered?

b. Set
$$\Delta_{a}=0$$
, $B_{ heta}\left(b
ight)=\left(\mu_{0}I_{p}/2\pi b
ight)$

c.
$$B_{v} = \frac{\mu_{0}I}{4\pi R_{0}} \left[\left(\beta_{p} + \frac{l_{i}}{2} - \frac{1}{2} \right) \left(1 - \frac{a^{2}}{b^{2}} \right) + \ln \frac{b}{a} \right]$$

The Limit $b \rightarrow \infty$

- 1. How much field is required for $\Delta_a = 0$ if the shell *is not* present?
- 2. Imagine the shell receding further and further away so that $b/a \rightarrow \infty$
- 3. Take this limit in the expression for B_v

$$1 - \frac{a^2}{b^2} \to 1$$
$$\ln \frac{b}{a} \to ?$$

4. What is the difficulty?

- a. Physically $b < R_0$. Also we assumed $b/R_0 \ll 1$
- b. Here is a simple approximation: $\ln(b/a) \rightarrow \ln(R_0/a)$

Electrical Engineering Derivation of the In b/a Limit

- 1. In *b/a* represents the force due to the change in magnetic energy between the plasma and the wall as the plasma shifts outward by an amount $dR_0 = \Delta$
- 2. It is the analog of the I_i term except applied to the external field
- 3. External field changes:

4. The force $= -\nabla$ (potential energy) $= -\nabla$ (magnetic energy) as the plasma is displaced by an amount dR_0 . Note that since the plasma is a perfect conductor, the flux linking the plasma remains fixed during the displacement

a.
$$F = -\frac{d}{dR_0} \left[\frac{1}{2\mu_0} \int B_{\theta}^2 d\mathbf{r} \right] = -\frac{d}{dR_0} \left(\frac{1}{2} L_e I^2 \right)$$
 external inductance

b. Constant flux implies $L_e I = \psi_e = \text{const.}$

c.
$$F = -\frac{L_e^2 I^2}{2} \frac{d}{dR} \frac{1}{L_e} = \frac{I^2}{2} \frac{dL_e}{dR_0}$$

5. If the plasma is surrounded by a shell

$$L_{\rm e} = \mu_0 R_0 \ln b/a$$
$$\mu_0 I^2 \quad b$$

$$F = \frac{\mu_0 r}{2} \ln \frac{b}{a}$$

6. For a plasma without a shell (homework problem)

$$L_e = \mu_0 R_0 \left[\ln \frac{8R_0}{a} - 2 \right]$$
$$F = \frac{\mu_0 I^2}{a} \left[\ln \frac{8R_0}{a} - 1 \right]$$

7. Therefore, the proper limit is

$$\ln \frac{b}{a} \rightarrow \ln \frac{8R_0}{a} - 1 = \ln \frac{R_0}{a} + 1.08$$

8. Substitute into the B_v formula

$$B_{\nu} = \frac{\mu_0 I}{4\pi R_0} \left[\beta_p + \frac{I_i}{2} - \frac{3}{2} + \ln \frac{8R_0}{a} \right]$$

9. This is a widely used formula in the design of circular tokamaks

Summary of Ohmically Heated Tokamak Equilibria

- 1. low β : $\beta_t \sim \epsilon^2$, $\beta_p \sim 1$
- 2. $q \sim 1$: required for stability

- 3. radial pressure balance: poloidal field (Z pinch)
- 4. toroidal force balance: vertical field B_v
- 5. toroidal field: needed only for stability to keep $q \sim 1$
- 6. Ordering

$$\beta_t \sim \epsilon^2$$
$$\beta_p \sim 1$$
$$q \sim 1$$
$$B_{\theta}/B_0 \sim \epsilon$$
$$\delta B_{\phi}/B_0 \sim \epsilon^2$$

Intuitive Form of Toroidal Force Balance

- 1. Multiply the B_v equation by $2\pi R_0 I$
- 2. Then

$$2\pi R_0 IB_V = \frac{\mu_0 I^2}{2} \left[\beta_p + \frac{l_i}{2} - \frac{3}{2} + \ln \frac{8R_0}{a} \right]$$

- 3. $T_1 = 2\pi R_0 I B_v = B_v I L$ force due to the vertical field acting on the current I
- 4. $T_2 = \frac{\mu_0 I^2}{2} \left[\ln \frac{8R_0}{a} 1 \right] = \frac{I^2}{2} \frac{dL_e}{dR}$ force due to the change in the external field
- 5. $T_3 = \frac{\mu_0 I^2}{2} \frac{I_i}{2} = \frac{\mu_0 I^2}{4} \frac{L_i}{2\pi R_0} \frac{4\pi}{\mu_0} = \frac{I^2}{2} \frac{L_i}{R_0}$

a. but

$$\frac{1}{2}L_i I^2 = \int \frac{B_\theta^2}{2\mu_0} d\mathbf{r} = \frac{2\pi^2 R_0}{\mu_0} \int B_\theta^2 r d\mathbf{r}$$

$$L_{i} = \left[\frac{4\pi^{2}}{\mu_{0}}\int\left(\frac{B_{\theta}}{I}\right)^{2}r \ dr\right] \times R_{0}$$

independent of R_0

22.615, MHD Theory of Fusion Systems Prof. Freidberg

Lecture 8 Page 7 of 9

b. Thus
$$L_i \propto R_0$$
 and $\frac{L_i}{R_0} = \frac{dL_i}{dR_0}$ so that $\frac{\mu_0 I^2}{2} \frac{l_i}{2} = \frac{I^2}{2} \frac{dL_i}{dR_0}$
c. $T_3 = \frac{I^2}{2} \frac{dL_i}{dR_0}$
6. $T_4 = \frac{\mu_0 I^2}{2} \Big[\beta_p - \frac{1}{2} \Big] = \frac{\mu_0 I^2}{2} \Big[\frac{16\pi^2}{\mu_0 I^2} \int pr \, dr - \frac{1}{2} \Big]$
 $= 8\pi^2 \int pr \, dr - \frac{\mu_0 I^2}{4}$

a. Recall the general pressure balance relation

$$2\pi \int pr \, dr = \frac{\mu_0 I^2}{8\pi} + 2\pi \int r \frac{B_0^2 - B_\phi^2}{2\mu_0} \, dr$$

let $B_\phi(r) = B_0 + B_2(\psi_0) \equiv B_0 + \delta B_\phi(r)$
 $\frac{\mu_0 I^2}{4} = 4\pi^2 \int pr \, dr + 4\pi^2 \int r \frac{B_0 \delta B_\phi}{\mu_0} \, dr$
b. $T_4 = 8\pi^2 \int pr \, dr - 4\pi^2 \int pr \, dr - 4\pi^2 \int r \, dr \frac{B_0 \delta B_\phi}{\mu_0}$
 $= 4\pi^2 \int \left(p - \frac{B_0 \delta B_\phi}{\mu_0} \right) r \, dr$

7. Summary

$$2\pi R_0 IB_v = \frac{I^2}{2} \frac{d}{dR_0} (L_e + L_i) + 4\pi^2 \int \left(p - \frac{B_0 \delta B_{\phi}}{\mu_0} \right) r \, dr$$

vertical field force hoop force tire tube force 1/R force

- 8. Proof of the tire tube and 1/R force
 - a. F_{tt} : $F_{tt} = -\int e_R \cdot \nabla p \, dr$

22.615, MHD Theory of Fusion Systems Prof. Freidberg

$$= -\int \left[\underbrace{\nabla \cdot (\mathbf{e}_R p)}_{\downarrow} - p \nabla \cdot \mathbf{e}_R \right] dr$$

integrates to zero

$$= \int \frac{p}{R} Rr d\phi \, dr \, d\theta$$
$$= 4\pi^2 \int pr \, dr$$

b. *F*_{1/R}

$$J_{p} \times B_{\phi} \cdot e_{R} = \frac{1}{R\mu_{0}} \Big[\nabla RB_{\phi} \times e_{\phi} \Big] \times B_{\phi} e_{\phi} \cdot e_{R} = -\frac{B_{\phi}}{R\mu_{0}} e_{R} \cdot \nabla RB_{\phi}$$
$$= -\frac{1}{R^{2}} e_{R} \cdot \nabla \frac{R^{2}B_{\phi}^{2}}{2\mu_{0}}$$
$$= -\frac{1}{R^{2}} e_{R} \cdot \nabla \frac{F^{2}}{2\mu_{0}} = -\frac{1}{R^{2}} e_{R} \cdot \nabla \frac{R_{0}^{2}}{2\mu_{0}} \Big(B_{0}^{2} + 2B_{0}\delta B_{\phi} \Big)$$
$$= -\frac{R_{0}^{2}}{\mu_{0}R^{2}} e_{R} \cdot \nabla B_{0}\delta B_{\phi}$$
c. $F_{1/R} = \int \Big(J_{p} \times B_{\phi} \cdot e_{R} \Big) dr$
$$= -\frac{R_{0}^{2}}{2\mu_{0}} \Big(\frac{1}{2} e_{R} \cdot \nabla B_{0} \delta B_{\phi} dr$$

$$= -\frac{1}{\mu_0} \int \frac{R^2}{R^2} e_R \cdot \nabla B_0 \partial B_{\phi} dI$$
$$= -\frac{R_0^2}{\mu_0} \int \left[\nabla \cdot \left(\frac{B_0 \delta B_{\phi}}{R^2} e_R \right) - B_0 \delta B_{\phi} \nabla \cdot \frac{e_R}{R^2} \right] dr$$
$$= -\frac{R_0^2}{\mu_0} \int \frac{B_0 \delta B_{\phi}}{R^3} dr \approx -\frac{R_0^2}{\mu_0} \int \frac{B_0 \delta B_{\phi}}{R^3} Rr d\phi \ d\theta dr$$

$$\approx -4\pi^2 \int \frac{B_0 \delta B_{\phi}}{\mu_0} r \, dr$$

22.615, MHD Theory of Fusion Systems Prof. Freidberg

Lecture 8 Page 9 of 9