22.615, MHD Theory of Fusion Systems
 Prof. Freidberg
 Lecture 5: The Screw Pinch and the Grad-Shafranov Equation

Screw Pinch Equilibria

1. A hybrid combination of Z pinch and θ pinch

2. This combination of fields allows the flexibility to optimize configurations with respect to toroidal force balance and stability.
3. Field components: $\mathrm{B}=B_{\theta}(r) e_{\theta}+B_{z}(r) e_{z}, p=p(r)$
a. $\quad \nabla \cdot B=0$

$$
\frac{1}{r} \frac{\partial B_{\theta}}{\partial \theta}+\frac{\partial B_{z}}{\partial z}=0 \text { automatically satisfied }
$$

b. $\mu_{0} J=\nabla \times \mathrm{B}=-\mathrm{B}_{\mathrm{Z}}^{\prime} \mathrm{e}_{\theta}+\left[\left(r B_{\theta}\right)^{\prime} / r\right] e_{z}$
c. $\mathrm{J} \times \mathrm{B}=\nabla p$

$$
\begin{aligned}
\nabla p & =\mathrm{p}^{\prime} e_{r} \\
\mathrm{~J} \times \mathrm{B} & =\left(J_{\theta} B_{z}-J_{z} B_{\theta}\right) e_{r} \\
& =-\frac{1}{\mu_{0}}\left[\frac{B_{\theta}}{r}\left(r B_{\theta}\right)^{\prime}+B_{z} B_{z}^{\prime}\right]
\end{aligned}
$$

Even though the equations are nonlinear, the forces superpose because of symmetry

$$
\frac{d}{d r}\left(p+\frac{B_{z}^{2}+B_{\theta}^{2}}{2 \mu_{0}}\right)+\frac{B_{\theta}^{2}}{\mu_{0} r}=0 \quad \text { screw pinch pressure balance relation }
$$

4. The screw pinch has many properties of more realistic, multidimensional toroidal configurations
a. There are two free functions, say $B_{\theta}(r), B_{z}(r)$. (The θ pinch, Z pinch are special degenerate cases)
b. The constant pressure contours $p(r)=$ constant are circles $r=$ constant. The flux surfaces are closed, nested, concentric circles.
c. $\quad \beta$ can be varied over a wide range if $B_{z}(0) \neq 0$
d. The magnetic lines wrap around the plasma giving a nonzero rotational transform

General Equilibrium Relation for 1-D Configurations

1. This is a useful relation for defining β

$$
\frac{d}{d r}\left(p+\frac{B_{\theta}^{2}+B_{z}^{2}}{2 \mu_{0}}\right)+\frac{B_{\theta}^{2}}{\mu_{0} r}=0>\int 2 \pi r^{2} d r
$$

2. $T_{1}=2 \pi \int d r r^{2}\left(p+\frac{B_{z}^{2}}{2 \mu_{0}}\right)^{\prime}=-4 \pi \int r d r\left(p+\frac{B_{z}^{2}}{2 \mu_{0}}\right)+\left.2 \pi r^{2}\left(p+\frac{B_{z}^{2}}{2 \mu_{0}}\right)\right|_{0} ^{a}$

$$
=2 \pi a^{2}\left(\frac{B_{0}^{2}}{2 \mu_{0}}\right)=-4 \pi \int r d r\left(p+\frac{B_{z}^{2}}{2 \mu_{0}}\right)=-4 \pi \int r d r p+4 \pi \int r d r \frac{\left(B_{0}^{2}-B_{z}^{2}\right)}{2 \mu_{0}}
$$

3. $T_{2}=\frac{2 \pi}{\mu_{0}} \int d r r^{2} \frac{B_{\theta}}{r}\left(r B_{\theta}\right)^{\prime}=\frac{2 \pi}{\mu_{0}} \int d r\left[\frac{\left(r^{2} B_{\theta}^{2}\right)}{2}\right]=\left.\frac{\pi r^{2} B_{\theta}^{2}}{\mu_{0}}\right|_{0} ^{a}$

$$
=\frac{\pi a^{2}}{\mu_{0}}\left(\frac{\mu_{0} I}{2 \pi a}\right)^{2}=\frac{\mu_{0} I^{2}}{4 \pi}
$$

4. The general equilibrium relation is given by

$$
2 \pi \int p r d r=\frac{\mu_{0} I^{2}}{8 \pi}+2 \pi \int \frac{B_{0}^{2}-B_{z}^{2}}{2 \mu_{0}} r d r
$$

plasma energy line density poloidal tension toroidal diamagnetism
5. This suggests the following cylindrical definitions

$$
\beta_{p}=\frac{16 \pi^{2} \int p r d r}{\mu_{0} I^{2}} \quad \text { poloidal } \beta
$$

$$
\beta_{T}=\frac{4 \mu_{0} \int p r d r}{a^{2} B_{0}^{2}} \quad \text { toroidal } \beta
$$

Calculate the Rotational Transform

1. Note that $\Delta \theta$ is independent of θ_{0} because of cylindrical symmetry.
2. The average value of $\Delta \theta$ is just the change θ as the magnetic line moves one length along the torus

3. Calculate the field line trajectories

$$
\begin{align*}
& \frac{d r}{d z}=\frac{B_{r}}{B_{z}}=0 \tag{1}\\
& \frac{d \theta}{d z}=\frac{B_{\theta}}{r B_{z}} \tag{2}
\end{align*}
$$

4. Equation (1) implies that $r(z)=$ const. The magnetic lines lie on circles. This is not surprising since the $p(r)=$ const. surfaces are circles.
5. Solve Eq. (2)

$$
\begin{aligned}
& \frac{d \theta}{d z}=\frac{B_{\theta}(r)}{r B_{z}(r)} \\
& d \theta=\frac{B_{\theta}}{r B_{z}} d z \\
& \int_{0}^{\Delta \theta} d \theta=\int_{0}^{2 \pi R_{0}} \frac{B_{\theta}}{r B_{z}} d z
\end{aligned}
$$

6. The angle $\Delta \theta$ is by definition just equal to 1

$$
\mathfrak{l}(r)=\frac{2 \pi R_{0} B_{\theta}}{r B_{z}}
$$

7. The safety factor is defined as

$$
\begin{aligned}
& q(r)=\frac{2 \pi}{\mathfrak{l}(r)} \\
& q(r)=\frac{r B_{z}}{R_{0} B_{\theta}}
\end{aligned}
$$

8. Note $\mathfrak{\imath}(r)=0$ for a θ pinch and $\mathfrak{t}(r)=\infty$ for a Z pinch
9. The 1-D radial pressure balance relation for a screw pinch accurately describes radial pressure balance in all fusion configurations of interest

Examples

High β tokamak

Toroidal Force Balance

1. Consider the axisymmetric torus, the simplest, multi-dimensional configuration
2. We shall derive the Grand-Shafranov equation for axisymmetric equilibria
3. This provides a complete description of toroidal equilibrium
a. radial pressure balance
b. toroidal force balance
c. β limits
d. q profiles
e. magnetic well, etc....
4. It applies to the following configurations
a. RFP
b. ohmic tokamak (circular and noncircular)
c. high β tokamak (circular and noncircular)
d. flux conserving tokamak (circular and noncircular)
e. spherical tokamak (circular and noncircular)
f. spheromak (circular and noncircular)
g. toroidal multipole (circular and noncircular)
5. Grad-Shafranov equation
a. exact (no expansion)
b. axisymmetric $\partial / \partial \phi=0$
c. 2-D
d. nonlinear
e. partial differential equation
f. elliptic characteristics

6. Plan of action
a. Derive the exact Grad-Shafranov equation
b. Solve by means of an asymptotic expansion in a / R
c. Zero order: $(a / R)^{0} \rightarrow$ 1-D screw pinch radial pressure balance
d. First order: $(a / R)^{1} \rightarrow$ toroidal force balance

Derivation

1. Geometry
2. Axisymmetry
$\frac{\partial}{\partial \phi}=0$
$Q(R, \phi, Z) \rightarrow Q(R, Z)$

3. We solve in this order
$\nabla \cdot B=0$
$\mu_{0} J=\nabla \times B$
$\mathrm{J} \times \mathrm{B}=\nabla p$
4. $\nabla \cdot B=0$
a. $\frac{1}{R} \frac{\partial}{\partial R} R B_{R}+\frac{1}{R} \frac{\partial B \phi}{\frac{\partial B}{\partial \phi}+}+\begin{array}{r}\frac{\partial B_{Z}}{\partial Z}=0 \\ L^{2}\end{array}$
b. B_{ϕ} is arbitrary as of now
c. $\quad B_{Z}=\frac{1}{R} \frac{\partial \psi}{\partial R}$
introduce "flux" function ψ $\left.B_{R}=-\frac{1}{R} \frac{\partial \psi}{\partial Z}\right\}$
d. These results can be summarized as follows

$$
\mathrm{B}=B_{\phi} \mathrm{e}_{\phi}+\mathrm{B}_{p}
$$

$$
\begin{aligned}
\mathrm{B}_{p} & =\frac{1}{R} \nabla \psi \times e_{\phi} \\
\psi & =\psi(R, Z)
\end{aligned}
$$

5. Why is ψ the "flux" function?
a. $B_{p}=\nabla \times A=\nabla \times\left(A_{\phi} e_{\phi}\right)=\frac{1}{R} \frac{\partial}{\partial R} R A_{\phi} e_{Z}-\frac{\partial A_{\phi}}{\partial Z} e_{R}$

$$
\psi=R A_{\phi}
$$

b. $\quad \psi_{p}=\int \mathrm{B}_{p} \cdot d \mathrm{~A}$

$$
\begin{aligned}
& =\int_{R_{\mathrm{e}}}^{R} d R \int B_{z}(R, Z=0) R d \phi \\
& =\int_{\mathrm{R}_{\mathrm{e}}}^{R} 2 \pi R \frac{1}{R} \frac{\partial \psi}{\partial R} d R
\end{aligned}
$$

c. $\quad \psi_{p}=2 \pi\left[\psi(R, 0)-\psi\left(R_{a}, 0\right)\right] \psi\left(R_{a}, 0\right)$ is arbitary \rightarrow set to zero

$$
\psi_{p}=2 \pi \psi
$$

d. We usually label the flux surfaces with ψ values rather than p values
6. $\mu_{0} J=\nabla \times B$
a. $\mu_{0} J=\nabla \times\left[R B_{\phi} \frac{e_{\phi}}{R}+\frac{1}{R} \nabla \psi \times e_{\phi}\right]$

$$
\begin{aligned}
= & \nabla\left(R B_{\phi}\right) \times \frac{e_{\phi}}{R}+R B_{\phi} \nabla \times \frac{e_{\phi}^{\prime}}{R}+\frac{e_{\phi}}{R} \cdot \nabla(\nabla \psi)-\nabla \psi \cdot \nabla \frac{e_{\phi}}{R}-\frac{e_{\phi}}{R} \nabla \cdot \nabla \psi+\nabla \psi \nabla \cdot \frac{e_{\phi}^{\prime}}{R}=0 \\
= & \nabla\left(R B_{\phi}\right) \times \frac{e_{\phi}}{R}-\frac{e_{\phi}}{R} \nabla^{2} \psi+\frac{1}{R^{2}} \frac{\partial}{\partial \phi}\left(\frac{\partial \psi}{\partial R} e_{R}+\frac{\partial \psi}{\partial Z} e_{z}\right) \rightarrow \frac{1}{R^{2}} \frac{\partial \psi}{\partial R} e_{\phi} \\
& -\left(\frac{\partial \psi}{\partial R} \frac{\partial}{\partial R}+\frac{\partial \psi}{\partial Z} \frac{\partial}{\partial Z}\right) \frac{e_{\phi}}{R} \rightarrow \frac{1}{R^{2}} \frac{\partial \psi}{\partial R} e_{\phi} \\
= & \nabla R B_{\phi} \times \frac{e_{\phi}}{R}-\frac{e_{\phi}}{R}\left[\frac{\partial^{2} \psi}{\partial R^{2}}+\frac{1}{R} \frac{\partial \psi}{\partial R}+\frac{\partial^{2} \psi}{\partial Z^{2}}-\frac{2}{R} \frac{\partial \psi}{\partial R}\right]
\end{aligned}
$$

$$
\mu_{0} J=\nabla R B_{\phi} \times \frac{e_{\phi}}{R}-\frac{e_{\phi}}{R}\left[R \frac{\partial}{\partial R}\left(\frac{1}{R} \frac{\partial \psi}{\partial R}\right)+\frac{\partial^{2} \psi}{\partial Z^{2}}\right]
$$

b. These results can be summarized as follows

$$
\begin{aligned}
& \mu_{0} \mathrm{~J}=\mu_{0} \mathrm{~J}_{\phi} \mathrm{e}_{\phi}+\mu_{0} \mathrm{~J}_{p} \\
& \mu_{0} \mathrm{~J}_{\rho}=\frac{1}{R} \nabla R B_{\phi} \times \mathrm{e}_{\phi} \\
& \mu_{0} \mathrm{~J}_{\phi}=-\frac{1}{R} \Delta^{*} \psi \\
& \Delta^{*} \psi \equiv R \frac{\partial}{\partial R} \frac{1}{R} \frac{\partial \psi}{\partial R}+\frac{\partial^{2} \psi}{\partial Z^{2}}=R^{2} \nabla \cdot\left(\frac{\nabla \psi}{R^{2}}\right)
\end{aligned}
$$

7. Force balance $\mathrm{J} \times \mathrm{B}=\nabla p$

Decompose this relation into three components along B, J, $\nabla \psi$
8. B component
a. $B \cdot \nabla p=0$
b. $\frac{B_{\phi}}{R} \frac{\partial p}{\partial \phi}+\frac{\nabla \psi \times e_{\phi}}{R} \cdot \nabla p=0$
c. $e_{\phi} \cdot \nabla \psi \times \nabla p=0$
d. $\quad p=p(\psi) \quad \mathrm{p}$ is an arbitrary free function of ψ.
e. There is no way to determine $p(\psi)$ from ideal MHD. We need transport theory or some other simple physical model.
f. Note: $p(\psi)$ is more of a constraint than $p(r, \theta)$
9. J component
a. $\mathrm{J} \cdot \nabla p=0$
b. $\frac{J_{\phi}}{R} \frac{\partial p}{\partial \phi}+\mathrm{J}_{p} \cdot \nabla p=0 \rightarrow \frac{1}{R} \nabla R B_{\phi}: \times e_{\phi} \cdot \nabla \psi \frac{d p}{d \psi}=0$
c. $\frac{1}{R} \frac{d p}{d \psi}\left[e_{\phi} \cdot \nabla \psi \times R B_{\phi}\right]=0$
d. $R B_{\phi}=F(\psi) \quad F$ is an arbitrary free function
10. Interpretation of $F(\psi)$

a. $\quad I_{p}=\int J_{p} \cdot d \mathrm{~A}=\int_{0}^{R} d R \int_{0}^{2 \pi} R d \phi\left(\nabla R B_{\phi} \times \frac{e_{\phi}}{R}\right) z$

$$
\begin{aligned}
& =2 \pi \int_{0}^{R} d R \frac{\partial F}{\partial R}=2 \pi[F(R, 0)-F(0,0)] \\
& L_{=\left.R B_{\phi}\right|_{0}=0}
\end{aligned}
$$

b. $\quad I_{p}=2 \pi F(\psi)$
c. $\quad I_{p}(\psi)$ is the total poloidal current passing through the circle $\psi(R, 0)=$ const.
11. $\nabla \psi$ component

$$
\nabla \psi \cdot(\mathrm{J} \times \mathrm{B}-\nabla p)=0
$$

a. $\quad T_{1}=-\nabla \psi \cdot \nabla p=-\frac{d p}{d \psi}(\nabla \psi)^{2}$
b. $\quad T_{2}=\left(J_{p}+J_{\phi} e_{\phi}\right) \times\left(B_{p}+B_{\phi} e_{\phi}\right) \cdot \nabla \psi$

$$
=\left[J_{p} \times \mathrm{B}_{p}+\mathrm{J}_{p} \times e_{\phi} B_{\phi}+e_{\phi} \times \mathrm{B}_{p} J_{\phi}+\left(e_{\phi} \times e_{\phi}\right) J_{\phi} B_{\phi}\right] \cdot \nabla \psi
$$

c. $\quad T_{a}=\frac{1}{\mu_{0}}\left[\frac{1}{R} \nabla F \times e_{\phi} \times \frac{1}{R} \nabla \psi \times e_{\phi}\right] \cdot \nabla \psi$

$$
=\frac{1}{\mu_{0} R^{2}} \frac{d F}{d \psi}\left[\left(\nabla \psi \times e_{\phi}\right) \times\left(\nabla \psi \times e_{\phi}\right)\right] \cdot \nabla \psi=0
$$

d. $T_{b}=\frac{1}{\mu_{0}}\left[\left(\frac{1}{R} \nabla F \times e_{\phi}\right) \times e_{\phi}\right] \cdot \nabla \psi B_{\phi}$

$$
\begin{aligned}
& =\frac{F}{\mu_{0} R^{2}} \frac{d F}{d \psi}\left(\nabla \psi \times e_{\phi}\right) \times e_{\phi} \cdot \nabla \psi \\
& =-\frac{F}{\mu_{0} R^{2}} \frac{d F}{d \psi}(\nabla \psi)^{2}
\end{aligned}
$$

e. $\quad T_{c}=e_{\phi} \times \frac{\nabla \psi \times e_{\phi}}{R}\left(-\frac{1}{\mu_{0} R} \Delta^{*} \psi\right) \cdot \nabla \psi$

$$
=-\frac{1}{\mu_{0} R^{2}} \Delta^{*} \psi(\nabla \psi)^{2}
$$

f. Combine terms

$$
(\nabla \psi)^{2}\left[-\frac{d p}{d \psi}-\frac{1}{\mu_{0} R^{2}} \frac{d}{d \psi} \frac{F^{2}}{2}-\frac{1}{\mu_{0} R^{2}} \Delta^{*} \psi\right]=0
$$

g. The Grad-Shafranov equation is given by

$$
\Delta^{*} \psi=-\mu_{0} R^{2} \frac{d p}{d \psi}-F \frac{d F}{d \psi}
$$

where
$p=p(\psi)$
free functions

$$
F=F(\psi)
$$

$\mathrm{B}=\frac{1}{R} \nabla \psi \times e_{\phi}+\frac{F}{R} e_{\phi}$
$\mu_{0} J=\frac{1}{R} \frac{d F}{d \psi} \nabla \psi \times e_{\phi}-\frac{1}{R} \Delta^{*} \psi e_{\phi}$
and $\psi_{p}=2 \pi \psi, I_{p}=2 \pi F$

