22.615, MHD Theory of Fusion Systems Prof. Freidberg

Lecture 3: Validity of MHD

Ideal MHD Equation

$$\nabla \times \underline{E} = -\frac{\partial B}{\partial t} \qquad \nabla \cdot \underline{B} = 0$$

$$\nabla \times \underline{B} = \mu_0 \underline{J}$$
 $n_i = n_e = n$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \underline{v} = 0$$

$$\rho \frac{d\underline{V}}{dt} = \underline{J} \times \underline{B} - \nabla p$$

$$E + V \times B = 0$$

$$\frac{d}{dt}\frac{p}{\rho^r}=0$$

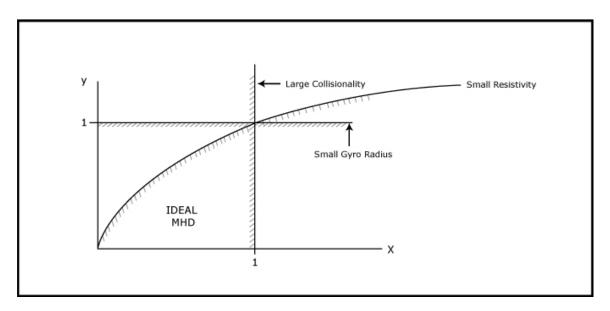
Summary of Assumptions

- 1. Asymptotic: $n_e \rightarrow 0$, $c \rightarrow 0$
- $2. \ \ \text{Collision dominates:} \ \left(\frac{m_i}{m_e}\right)^{\!\!1/2} \frac{v_{T_i} \tau_{ii}}{a} \ll 1 \underbrace{\qquad \qquad}_{\kappa \to \text{ thermal conduction small}}^{\pi \to p \text{ isotropic}}$
- $\label{eq:small} \text{3. Small gyro radius: } r_{ii}/a \ll 1 \qquad \qquad \text{electron diamagnetism small} \\ \text{small terms in energy equation}$
- 4. Small resistivity: $\left(\frac{m_e}{m_i}\right)^{\!\!1/2} \frac{a}{v_{T_i} \tau_{ii}} \! \left(\frac{r_{ii}}{a}\right)^{\!\!2} \ll 1$ Ohmic heating small

Conditions for validity

1. Define
$$y = \frac{r_{ii}}{a}$$
 $x = \left(\frac{m_i}{m_e}\right)^{1/2} \frac{v_{Ti}\tau_{ii}}{a}$

- 2. Small gyro radius y < 1
- 3. Large collisionality x < 1
- 4. Small resistivity $y^2/x < 1$



Does this regions overlap parameter space of fusion plasmas?

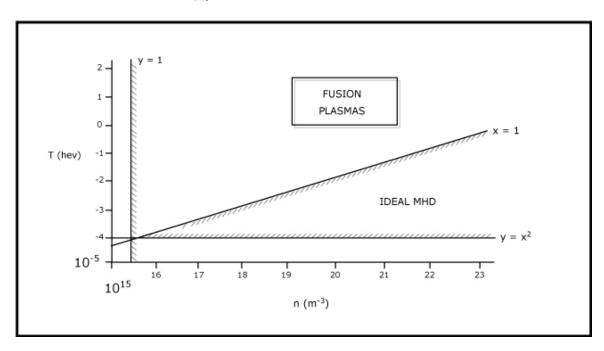
- 1. Replace y x diagram as n T diagram
- 2. Plasmas of fusion interest

$$10^{18} m^{-3} < n < 10^{20} m^{-3}$$

$$\cdot$$
5 kev < T < 50 kev

- 3. Rewrite conditions in terms n, T: Note, in this form B and a explicitly appear. Rather than B we hold $\beta = 2\mu_0 nT/B^2$ fixed. β is critical parameter for fusion reactors, set by MHD stability limits.
- 4. Validity conditions $(m \rightarrow D, Inr = 15) n(10^{20})$
 - a. High collisionality $x=3\times 10^3 \left(T^2 \middle/ an\right) \ll 1$

- b. Small gyro radius $y = 2.3 \times 10^{-2} \left(\beta/na^2\right)^{1/2} \ll 1$
- c. Small resistivity $\,y^2\big/x=1.8\times 10^{-7}\,\beta/aT^2\ll 1\,$
- 5. Plot for the case a=1m, $\beta = .05$



6. Conclusion

Ideal MHD model is not valid for plasmas of fusion interest.

- a. Reason- collision dominated assumption breaks down
- b. <u>But</u>- large empirical evidence that MHD works very well in describing macroscopic plasma behavior
- c. Question- is this lack of subtle physics?

Where specifically does ideal MHD breakdown?

- 1. Momentum equation
 - a. $\Pi \ll p$ because of <u>collision dominated</u> assumption
 - b. $\Pi_{\perp} \ll p$ from <u>collisionless</u> theory $\Pi_{\perp}/p \sim r_{ii}/a$ field holds fluid elements together \perp to B.
 - c. $\Pi_{\parallel} \sim p$ parallel to the field the motion of ions is kinetic $\tau_{MHD} \sim a/v_{\tau i}$, $\tau_{MIN} \sim a/v_{\tau i}$

d. ∴ ⊥ momentum equation OK

| momentum equation not accurate

- 2. Energy Equation
 - a. $\nabla_{_{||}}K_{||e}J_{N}T_{e}\ll\partial p_{e}/\partial t$ collision dominated assumption
 - b. $K_{\parallel} \to \infty$ rather than zero in collisionless plasma
 - c. More accurate equation of state $\rightarrow \underline{B} \cdot \nabla T = 0$
 - d. ∴ energy equation not accurate

MHD errors in the momentum and energy equation do not matter why?

Note that $\underline{v}_{\scriptscriptstyle \parallel}$ does not appears.

- 2. Errors appear in || momentum equation and energy equation.
- 3. However, it turns out that for MHD equilibrium and most MHD instabilities, the parallel motion plays a small or negligible role. This is not obvious apriori
- 4. Assuming this to be true, an incorrect treatment of parallel motion is unimportant, since no parallel motions are exerted: the motions are incompressible.
 - a. $\underline{B} \cdot \nabla \rho = 0$ no density compression along B
 - b. $B \cdot \nabla T = 0$ $\kappa_{\parallel} \rightarrow \infty$
- 5. The condition $\underline{B} \cdot \nabla \rho = 0$, faradays law and ohms law can be shown to imply $\frac{d\rho}{dt}=0$. Conservation of mass then implies $\,\nabla\cdot\underline{v}=0\,$

Summary of theories

Collisional	Collisionless	Collisional with $\nabla \cdot \underline{\mathbf{v}} = 0$
$\frac{d\rho}{dt} + \rho \nabla \cdot \underline{v} = 0$	$\frac{d\rho}{dt}=0$	$\frac{d\rho}{dt}=0$
$\rho \frac{d\underline{\mathbf{v}}_{\perp}}{dt} = \underline{\mathbf{J}} \times \underline{\mathbf{B}} - \nabla_{\perp} \mathbf{p}$	$\rho \frac{d\underline{v}_{\perp}}{dt} = \underline{J} \times \underline{B} - \nabla_{\perp} p$	$\rho \frac{d\mathbf{v}_{\perp}}{dt} = \underline{\mathbf{J}} \times \underline{\mathbf{B}} - \nabla_{\perp} \mathbf{p}$
$\rho \frac{d\underline{v}_{\parallel}}{dt} = \frac{\underline{B}}{B} \cdot \nabla p \rightarrow \text{ wrong}$	$\nabla \cdot \underline{\mathbf{v}} = 0$ (equivalent to $\underline{\mathbf{B}} \cdot \nabla \rho = 0$)	$\nabla \cdot \underline{\mathbf{v}} = 0$
$\underline{E} + \underline{v}_{\perp} \times \underline{B} = 0$	$\underline{E} + \underline{v}_{\perp} \times \underline{B} = 0$	$\underline{E} + \underline{v}_{\perp} \times \underline{B} = 0$
$\frac{d}{dt}p + rp\nabla \cdot \underline{v} = 0 \rightarrow \text{ wrong}$	$\underline{B} \cdot \nabla \rho = 0 \text{ (equivalent to}$ $\frac{d\rho}{dt} = 0 \text{)}$	$\frac{d\rho}{dt}=0$

Conclusion

- a. Once incompressibility is accepted as the dominant motion of unstable MHD modes, then errors in ideal MHD do not enter the calculation.
- b. Ideal MHD gives the "same" answer as "collisionless MHD".

Collisionless derivation from guiding enter theory

$$\underline{\textbf{J}}_{\perp} \, = \, \underline{\textbf{J}}_{mag} \, + \, \sum_{\xi i} \textbf{q}_{\alpha} \! \int \! \textbf{F}_{\alpha} \left[\underline{\textbf{V}}_{\nabla B} \, + \, \underline{\textbf{V}}_{z} \, + \, \underline{\textbf{V}}_{p} \, + \, \textbf{V}_{\underline{\textbf{E}} \nabla \underline{\textbf{B}}} \, \right] \textbf{d}\underline{\textbf{v}}$$

$$\underline{J}_{mag} = -\nabla \times \left(\frac{p}{B}\underline{b}\right)$$

MHD ordering

$$\underline{E} + \underline{v}_{\perp} \times \underline{B} = 0$$

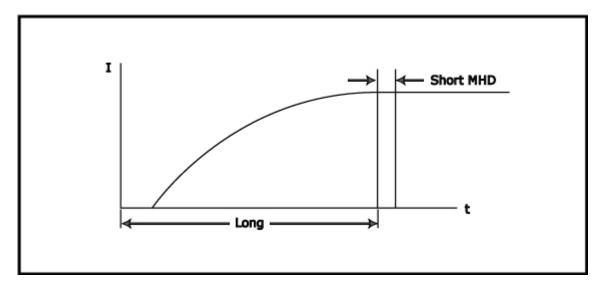
$$\underline{b} \times \! \left(\frac{d\underline{v}_{\perp}}{dt} \times \underline{b} \right) = \underline{J} \times \underline{B} - \nabla_{\perp} \! p$$

No way to determine equation of state for GC theory

Assume $\frac{d\rho}{dt} = 0$, $\frac{d\rho}{dt} = 0 \rightarrow \text{ gives collisionless result.}$

General Properties of MHD Model

1. Use:



Long time: (transport) $\rightarrow p_{\perp} \approx p_{\parallel} \approx \text{ maxwellion}$

Short time: continuously test MHD stability as the profile evolves on the slow transport time scale

2. General Conservation Laws

a. Mass
$$\frac{dM}{dt} = 0$$
 $M = \int \rho \, d\underline{r}$

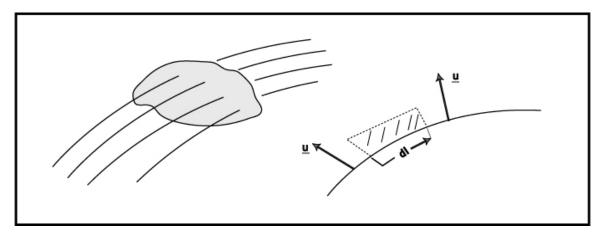
b. Momentum
$$\frac{dP}{dt} = 0$$
 $\underline{P} = \int \rho \, \underline{v} \, d\underline{r}$

c. Energy
$$\frac{dW}{dt}=0$$
 $W=\int \left[\frac{1}{2}\rho v^2+\frac{p}{r-1}+\frac{B^2}{2N_0}\right]d\underline{r}$

Despite approximations, ideal MHD model exactly conserves (3-D nonlinear) mass, momentum and energy.

Conservation of Flux

$$\psi = \int \underline{B} \cdot \underline{n} \, ds$$



$$a. \quad \frac{d\psi}{dt} = \int \frac{\partial B}{\partial t} \cdot \underline{n} \, ds - \int \underline{dI} \cdot \underline{u} \times \underline{B}$$

contribution due to motion of surface $\underline{u} = \text{arb. surface velocity}$

$$\delta \psi = BdIu\,\delta t$$

$$= \underline{\mathbf{B}} \cdot (\underline{\mathbf{u}} \times \underline{\mathbf{dI}}) \, \delta \mathbf{t}$$

 $\frac{\delta \psi}{\delta t} = -\underline{d} \underline{I} \cdot \underline{u} \times \underline{B} \to \text{ change in } \psi \text{ due to moving surface.}$

$$b. \ \ \text{Now} \ \frac{\partial \underline{B}}{\partial t} = -\nabla \times \underline{E} = \nabla \times \left(\underline{v}_{\perp} \times \underline{B} - \underline{E}_{||}\right)$$

$$\begin{aligned} c. \quad & \frac{d\psi}{dt} = \int \nabla \times \left(\underline{v}_{\perp} \times \underline{B}\right) \cdot n \, ds - \int \underline{dI} \cdot \underline{u} \times B - \int \nabla \times \underline{E}_{\parallel} \cdot \underline{n} \, ds \\ \\ & = \int dI \cdot \left(\underline{v}_{\perp} - \underline{u}\right) \times \underline{B} - \int E_{\parallel} \underline{b} \cdot \underline{dI} \end{aligned}$$

- d. For ideal MHD $E_{\parallel}=0$
- e. Choose surface motion to coincide with plasma motion: $\underline{u}=\underline{v}$
- f. Then

$$\frac{d\psi}{dt}=0$$

g. Plasma and field are "frozen" together

- h. Important topological constraint: no breaking or tearing of field lines for physical displacements. Topology of \underline{B} lines preserved.
- i. Even small resistivity can be important as it allows <u>new</u> motions (tearing modes, resistive interchanges)