
22.615, MHD Theory of Fusion Systems 
Prof. Freidberg 

Lecture 3:  MHD Equilibrium 
 

Derivation of the MHD Equilibrium Equation 
  

1. Focus on the fluid momentum equations. 
 
2. Combine them in a clever way to obtain the basic equation of MHD 

equilibrium. 
 

3. In the derivation we will have to make a few assumptions, but these are well 
satisfied for the general problems of interest – MHD equilibrium and stability, 
and transport. 

 
4. Recall that the fluid momentum equations are given by 

 

( )u
P E u B R ulj

jj j j j j jk j j n jk

d
m n q n m

dt
+ ∇ ⋅ − + × = −∑ S

P

w 0

 

 
5. Sum these equations over all species, noting that 

 

P jj
≡∑    total pressure tensor for all species 

 

E Ej jj
q n = σ∑  

 

u B = J×Bj j jj
q n ×∑  

 

, ,
R wl l

jk j jkj k j k
m C d= =∑ ∑ ∫  

 
6. Then 
 

J×B E -j
j j j j njj j

du
m n p - m u S

dt
= + σ ∇ ∇ ⋅ Π −∑ ∑  

 
7. For all problems of interest we assume the plasma is sufficiently dense so that 

charge neutrality applies. Recall that this requires ,D a ,peλ ω ω which are 

well satisfied for MHD and transport phenomena. Charge neutrality implies 
that 

 

0j jj
q nσ = ≈∑  

  
 Thus, the term is the negligibly small. Eσ

 
8. During the course we will be interested in two main classes of problems 
 

22.615, MDH Theory of Fusion Systems                                                                                   Lecture 3    
Prof. Freidberg                           Page 1 of 10 

22.615, MHD Theory of Fusion Systems
Prof. Freidberg

        Lecture 3
Page 1 of 10



a. MHD equilibrium and stability – perturbation analysis about a static 
equilibrium. 

 
b. Transport phenomena including diffusion, heat conduction, and flux 

penetration. 
 

9. For these classes of problems, the fluid flow velocities are either zero or very 
small. 
 
a. For static MHD equlibria, u 0i ≈ and all current is carried by electrons. 
 
b. This implies that the inertial terms and source terms are negligible. For 

example 
 

2u
u uj e e e

j j e e e ej

d m n u
m n m n

dt a
⋅ ∇∑ ∼ ∼  

 
Substitute e eJ en u∼ and compare to the  term J×B

 
2 2

2 2 2
1e e e e

e pe

m n u m J aJc
aJB Be n aB a

0
⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ω ⎝ ⎠⎝ ⎠

∼ ∼
μ

 

 
c. A similar argument holds for transport phenomena, although we must now 

consider a nonzero ion fluid velocity associated with diffusion. This velocity 
is also very small. Typically 

 
u un D n D= − ∇ → ∼ a    flow velocity 

 

2t a

∂ χ
∂
∼    fastest transport time scale 

 
u uj i

j j i ij

d
n m n m

dt t
∂
∂∑ ∼  

 
Compare this term with p∇  
 

22

2 2 4

u
1

τ∂ χ χ
∇ ∂ τ τ

∼ ∼ ∼
i

ti i i i i

p ET

m n n m D a D
p t p a v a

 

 
d. The conclusion is that the inertia and source terms can be neglected. The 

momentum equation reduces to 
 

               J B p× = ∇ + ∇ ⋅ Π
 

10. The  matrix is also small under the situations of interest. There are two 
types of terms which appear in 

Π
Π , viscosity and pressure anisotropy. Since 
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viscosity is proportional to 2u∇μ , this term is small for zero or slow flows. It 
can easily be shown that 

 

( )
22

1
J×B
e e

e ei
u Le

a
∇ τ⎛ ⎞ Ω τ⎜ ⎟

⎝ ⎠
∼

μ
 

 
2

1i i ii

p

u
p

∇ τ
∇ τ

∼
μ

 

 
11. A similar calculation shows that the pressure anisotropy is very small, unless 

external sources are applied that deliberately drive an anisotropy. We shall 
not consider such situations. The time scale for any anisotropy to relax is 
typically for electrons and eeτ iiτ for ions. Thus, since  

 

1ii

p

τ
τ

 

 
the plasma should be isotropic for the situations of interest.   

 
12. The conclusion is that the MHD equilibrium equation 
 

 
 

is a very accurate representation of 
 
a. The initial equilibrium state of a static plasma, which is to be tested for 

MHD instability. 
 
b. The sequence of quasi-static states that a plasma evolves through as it 

slowly evolves on the transport time scale. 
 
Goals of MHD Equilibrium Studies 
 

1. Find configurations which confine and isolate hot plasmas from material walls. 
 
2. Find configurations which have good stability properties at high β . 

 
Why is β  so important in fusion? 
 

1. Consider the simple energy balance consisting of 
 

a. Alpha power in a thermonuclear plasma ( ) 24P Q nα α v= σ  watts/m3. 

 
b. Energy loss (3l iP nT= τ )E  watts/m3. 
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2. For successful ignition we need  :lP Pα >
 

12 i
E

T
n

Q vα

τ >
σ

 

 
3. Define ( ) 2 2

0 02 4 fore i i en T T B nT B T = T= μ + =β μ i . Here =β  plasma 

energy/magnetic energy. We find 
 

( )

2
048 1

Q
i

E 2
i

T

v T Bα
τ >

σ

μ
β   sec 

 
4. ( 2Ti vσ )  has a minimum at about 15 keV. Thus, 

 

     E

2.3
2B

τ >β   sec 

 
5. B has a maximum from technological considerations:  
 
     : 10 12 T, B 5max plasB −∼ ∼

 
          E 08τ >⋅

∼
β  

 
6. For fusion we need sufficiently high 
 

a. : limited by transport, classical, neoclassical, anomalous. This is the 
regime of kinetic theory 

Eτ

 
b. β : limited by MHD equilibrium and stability considerations. This is the 

regime of MHD theory, ideal and resistive. 
 

MHD Equilibrium Equations 
 

1. Momentum: 
 

 
 

2. Maxwell: 
 
       
 

 0B = J∇ × μ  
 
3. Note, consistent with the low frequency, long wavelength assumption, the 

displacement current is neglected in Ampere’s law. 
 

4. Note also that there is more information contained in the remaining moment 
equations. However, these equations are either trivially satisfied, or else give 
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information about other quantities which can be calculated once the above set 
of equations is solved. 

 
5. We will show that there is a wide degree of flexibility in finding solutions to 

the MHD equations; that is, the solutions are characterized by several free 
functions and boundary conditions which require transport theory, or some 
other physics to close the system. 

 
Basic Properties of Ideal MHD Equilibrium  
  

1. Virial theorem 
 
2. Toroidal geometry 

 
3. Flux surfaces and rotational transform 

 
4. Basic problem of toroidal equilibrium 
 

Virial Theorem 
  

1. Question: Can the following configuration be held in equilibrium only by its 
own currents? If so, we could build a fusion reactor with modest, or no coils. 

 

 
 

2. Answer: No! 
 

3. Proof: Virial theorem 
 

a. 
0

1
B B 0p ×∇ + ∇ × =

μ
 

 

( )

2

0 0

0 0

B B
0

BB B B B B

BB
0

2

2

B
p

B
p+

⎛ ⎞ ⋅ ∇
∇ + − =⎜ ⎟⎜ ⎟
⎝ ⎠

∇ ⋅ = ⋅ ∇ + ∇ ⋅

⎡ ⎤⎛ ⎞
∇ ⋅ Ι − =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

2μ μ

μ μ
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T 0 T

p

p

p

⊥

⊥∇ ⋅ = =      
2

0

2
0

2

2

p p B

p p - B

⊥ = +

=

μ

μ
 

 
b. Integrate the following identity over the plasma volume 
 

( ) ( )r T r T TTrace∇ ⋅ ⋅ = ⋅ ∇ ⋅ +  

 

( )
0

T 2 3
2

2B
Trace p p p+⊥= + =

μ
 

 

c. ( ) ( )
2

V V S
0

3p dr r T dr Sn r T
2

⎛ ⎞
+ = ∇ ⋅ ⋅ = ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ ∫ ⋅

B
d

μ
 

 

                                     ( ) ( ) ( )
2 2

S
0

d n r n b r b
2
B B

S p
⎡ ⎤⎛ ⎞

= ⋅ + − ⋅ ⋅⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫

0μ μ
 

 
d. Now assume the plasma can be confined by its own currents. Show that 

this leads to a contradiction. 
 

 
 

Choose S outside the plasma so that p(S)=0. Let : This is OK since 
there are no currents outside by assumption. For localized currents, the 
slowest decaying field scales as 

S → ∞

 

( ) 3
as

K
B S r

r
≤ → ∞    

  

e.  
2

dS

sin
2

2
6 6

K K
RHS = r θdθd r r

r r

⎡ ⎤
−⎢ ⎥

⎢ ⎥⎣ ⎦
∫ φ  

 
( )

3
0

g ,
dθd

r
= →∫

θ φ
φ    as   r → ∞
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f. 
2

2
B

LHS = 3p+  dr
0

⎛ ⎞
→⎜ ⎟⎜ ⎟

⎝ ⎠
∫ μ

  finite, positive quantity 

 
g. This is a contradiction. There must be current carrying coils outside the 

plasma. The surface integral must then include contributions from these 
surfaces. 

 
Toroidal Geometry 
 

1. Question:  Why are most fusion configurations toroidal? 
 
2. Answer:  Avoid parallel end losses 

 
3. Dominant loss mechanism is heat loss via thermal conduction 

 
4. Heat loss is more severe along B than⊥ to B. The magnetic field confines 

particles in the  direction. ⊥
 

5. Compare open ended and toroidal system 
 

  
 

      
 

6. Open ended system:  dominant, electron end loss eκ

 
7. Toroidal system:  dominant, ion cross field transport i⊥κ

 

8. ( )
1 2 5 2

21.12
3 2

e ei
i ii 2

i e i

Tm T B
m T n⊥

κ ⎛ ⎞ ⎛ ⎞
≈ Ω⎜ ⎟ ⎜ ⎟

κ ⎝ ⎠⎝ ⎠
τ ∝  
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9. For 20 32keV, 5 T, = 2 10 miT B =  n −= ×  

 

123 10e

i⊥

κ
= ×

κ
 

 
10. Large difference in  and ⊥  losses is the motivation for toroidicity 
 

Flux Surfaces 
 

1. In fusion configurations with confined plasmas the magnetic lines lie on a set 
of nested toroidal surfaces called flux surfaces. 

         
       

   
 
2. This follows from equilibrium relation 

  
  B 0p⋅ ∇ =

 
a. pressure is constant along a magnetic field line 
 
b. magnetic lines lie in surfaces of constant pressure 

 
c. flux surfaces are surfaces of constant pressure 

 
3. Similarly, the equilibrium relation 

 
J 0p⋅ ∇ =  
 
implies that the current lines lie on surfaces of constant pressure. The current 
flows between flux surfaces and not across them 
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4. Does this imply that J and B are parallel? 
 

 
 
Rotational Transform, Rational and Ergodic Surfaces 
 

1. There are two classes of flux surfaces that must be distinguished: rational and 
ergodic. 

 
2. The distinction is based upon rotational transform 

 
3.          

 
 
 Rotational transform ι  
 

1

1
Limit N

n
N N→∞

≡ Δ∑ι θ  

      
4. Rotational transform is the average change in poloidal angle per single transit 

in the toroidal direction 
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5. There are simpler ways to calculate ι  that will be discussed in the future. 

 
6. Rational surface 

 
2πι  is rational fraction 

 
Magnetic lines close on themselves after a finite number of transits 
 

 
2

n
m

=
π
ι

 

 
7. Ergodic surface 
 
 2πι  is  not rational  
 
 magnetic lines eventually cover an entire surface 

 
8. Stochastic volume: lines fill up a volume  ultra-poor confinement →
 
9. Transform plays an important role in MHD equilibrium and stability 

 
10. Often times the MHD safety is discussed in the literature 

 
2

q
π

=
ι

 

 
11. Note: for ergodic surfaces, the flux surfaces can be traced out by plotting 

contours of constant p or by following magnetic field line trajectories  
For rational surfaces, we must plot contours of constant p 

 
12. Are there more rational or ergodic surfaces in general? 

 

22.615, MDH Theory of Fusion Systems                                                                                   Lecture 3    
Prof. Freidberg                           Page 10 of 
10 

22.615, MHD Theory of Fusion Systems
Prof. Freidberg

        Lecture 3
Page 10 of 10


