22.615, MHD Theory of Fusion Systems
 Prof. Freidberg
 Lecture 2: The Moment Equations

Boltzmann-Maxwell Equations

1. Recall that the general coupled Boltzmann-Maxwell equations can be written as
a. $\frac{\partial f_{j}}{\partial t}+\mathrm{v} \cdot \nabla f_{j}+\frac{q_{j}}{m_{j}}(\mathrm{E}+\mathrm{v} \times \mathrm{B}) \cdot \nabla_{\mathrm{v}} \mathrm{f}_{j}=\sum_{k} C_{j k}+S_{j}$

$$
\nabla \times \mathrm{E}=-\frac{\partial \mathrm{B}}{\partial t}
$$

$$
\nabla \times \mathbf{B}=\mu_{0} J+\frac{1}{c^{2}} \frac{\partial \mathrm{E}}{\partial t}
$$

$$
\nabla \cdot \mathrm{E}=\frac{\sigma}{\epsilon_{0}}
$$

$$
\nabla \cdot B=0
$$

b. The particle and electromagnetic equations are coupled by

$$
\begin{aligned}
& \sigma=\sum_{j} q_{j} n_{j}=\sum_{j} q_{j} \int f_{j} d \mathrm{v} \\
& \mathrm{~J}=\sum_{j} q_{j} n_{j} \mathrm{u}_{j}=\sum_{j} q_{j} \int v f_{j} d \mathrm{v}
\end{aligned}
$$

c. The collision operators $C_{j k}$ arise from elastic collisions and satisfy a corresponding set of conservation relations.
2. Derivation of fluid equations - take moments as follows:
a. mass

$$
\int\left[\frac{d f_{j}}{d t}-\sum_{k} C_{j k}-s_{j}\right] d v=0
$$

b. momentum

$$
\int m_{j} v\left[\frac{d f_{j}}{d t}-\sum_{k} C_{j k}-s_{j}\right] d v=0
$$

c. energy

$$
\int \frac{m_{j} v^{2}}{2}\left[\frac{d f_{j}}{d t}-\sum_{k} C_{j k}-s_{j}\right] d v=0
$$

3. Introduce macroscopic quantities $n_{j}(r, t), u_{j}(r, t), p_{j}(r, t)$.
4. The moment equations become a set of coupled, time dependent PDE's relating the various macroscopic quantities.
5. There initial Boltzmann equation is a single scalar equation in f_{j} : $f_{j}=f_{j}(\mathrm{r}, \mathrm{v}, \mathrm{t})$. There are seven independent variables.
6. The resulting moment equations contain six fluid variables: $n_{j}, \mathrm{u}_{j,} T_{j,} p_{j}$, all functions of (r, t). There are four independent variables.
7. The fluid equations are far simpler to solve.
8. At a basic mathematics level the moment method appears to be ill conceived. You cannot solve a partial differential equation by integrating over several independent variables and then solving a reduced equation.
9. Example consider $\psi=\psi(r, \theta, t)$ satisfying
a. $\frac{\partial \psi}{\partial t}=\frac{1}{r} \frac{\partial}{\partial r} r f(r, \theta) \frac{\partial \psi}{\partial r}+\frac{1}{r^{2}} \frac{\partial}{\partial \theta} g(r, \theta) \frac{\partial \psi}{\partial \theta}=0$
b. Integrated over θ assuming periodicity: define $\langle G\rangle=(1 / 2 \pi) \int G d \theta$

$$
\frac{\partial}{\partial t}\langle\psi\rangle=\frac{1}{r} \frac{\partial}{\partial r} r\left\langle f \frac{\partial \psi}{\partial r}\right\rangle
$$

c. This equation is a correct expression, but not a useful one since two different averages appear: $\langle\psi\rangle,\langle f \partial \psi / \partial r\rangle$. Integrating over θ leads to a single, simpler reduced equation, but with two unknowns.
10. This is a general property of moment equations. When we take moments of the Boltzmann equation, we will obtain a set of correct relations, but there will be more unknowns than equations.
11. How do we resolve this problem? We will close the set of equations by solving the Boltzmann equation and then evaluating some of the higher order, additional unknowns.
12. This would seem to make the entire procedure circular. If we are going to solve the Boltzmann equation anyway why bother with the moment equations?

13. There is method to this madness.
a. First, even if we know the solution to the Boltzmann equation the moments represent more useful information in that they describe the measurable physical quantities in the system.
b. Second, and equally important, we are not just going to "simply solve" the Boltzmann equation for the extra unknowns. The full equation is enormously complicated to solve.
c. Instead, we shall solve the Boltzmann equation by means of various expansions(e.g. $m_{e} / m_{i}, r_{L} / a, \omega / \Omega$, etc).
d. Each order in the expansion is exponentially more painful to calculate than the previous order.
e. By having a carefully defined set of moment equations, we can determine beforehand exactly how many terms are needed in the expansions. In addition we can rewrite the moment equations in such a way as to further minimize the number of terms required.
f. These two reasons (physical variables, minimum algebra) are strong motivation for using the moment procedure.

Moment Equations

1. Procedure to be followed:
a. Calculate exact moments: mass, momentum, energy.
b. Introduce random velocity $\mathrm{v}=\mathrm{u}_{j}(\mathrm{r}, \mathrm{t})+\mathrm{w}$.
c. Define physical variables $n_{j}, \mathrm{u}_{j}, T_{j}, p_{j} \ldots$
d. Do some algebraic bookkeeping.
e. Arrive at a set of moment equations (with more unknowns than equations).
2. Now focus on the momentum equation from which we derive the MHD equilibrium equation. Show that this equation is valid for both MHD stability analysis and transport phenomena. Motivation: almost no knowledge of higher order unknowns is required.
3. Spend half a semester investigating applications of the MHD equilibrium equation.
4. Derive in detail the collision operators $C_{j k}$.
5. Spend half a semester investigating applications of the transport equations in cylindrical geometry.
6. Consider next the conservation of mass equation: we derive this carefully, carrying out all the steps.
a. $\int d \mathrm{v}\left[\frac{\partial f_{j}}{\partial t}+\mathrm{v} \cdot \nabla f_{j}+\frac{q_{j}}{m_{j}}(\mathrm{E}+\mathrm{v} \times B) \cdot \nabla_{v} f_{j}-\sum_{k} C_{j k}-s_{j}\right]=0$
b. Define $n_{j}=\int f_{j} d v \quad$ particle number density

$$
n_{j} u_{j}=\int v f_{j} d v \quad \text { particle flux }
$$

c. $\int d v \frac{\partial f_{j}}{\partial t}=\frac{\partial}{\partial t} \int d v f_{j}=\frac{\partial n_{j}}{\partial t}$
d. $\int d v \mathrm{v} \cdot \nabla f_{j}=\int d \mathrm{v}\left[\nabla \cdot\left(\mathrm{v} f_{j}\right)-f_{j} \nabla \cdot \mathrm{v}\right]$

$$
=\nabla \cdot \int d v v f_{j}=\nabla \cdot\left(n_{j} u_{j}\right)
$$

e. $\int d \mathrm{v} \frac{q_{j}}{m_{j}} \mathrm{E} \cdot \nabla_{v} f_{j}=\frac{q_{j}}{m_{j}} \mathrm{E} \cdot \int d \mathrm{v}\left[\mathrm{e}_{x} \frac{\partial f}{\partial v_{x}}+\mathrm{e}_{y} \frac{\partial f_{j}}{\partial v_{y}}+\mathrm{e}_{z} \frac{\partial f}{\partial v_{z}}\right]=0$
f. $\int d \mathrm{v} \frac{q_{j}}{m_{j}} \mathrm{v} \times \mathrm{B} \cdot \nabla_{v} f_{j}=\frac{q_{j}}{m_{j}} \int d \mathrm{v}\left[\left(v_{y} B_{z}-v_{z} B_{y}\right) \frac{\partial f_{j}}{\partial v_{x}}+\cdots\right]=0$
g. $-\int d \mathrm{v} \sum_{k} C_{j k}=-\sum_{k} \int d \mathrm{v} C_{j k}=0 \quad$ (conservation of particles)
h. $-\int d \mathrm{~V} s_{j} \equiv-S_{n j} \quad$ (source of density)
7. Combine terms: note one equation, four unknowns n_{j}, u_{j}

$$
\frac{\partial n_{j}}{\partial t}+\nabla \cdot\left(n_{j} u_{j}\right)=S_{n j}
$$

8. Similar procedure for the momentum equation yields

$$
\frac{\partial}{\partial t}\left(n_{j} m_{j} \mathrm{u}_{j}\right)+\nabla \cdot\left(n_{j} m_{j}\langle\mathrm{vv}\rangle\right)-q_{j} n_{j}\left(\mathrm{E}+\mathrm{u}_{j} \times \mathrm{B}\right)=\sum_{k}^{l} \int m_{j} \mathrm{v} C_{j k} d \mathrm{v}+\mathrm{S}_{p j}
$$

9. a. Here \sum_{k}^{\prime} denotes $k \neq j$ (due to conservation of momentum in like particle collisions)
b. $\mathrm{S}_{p j} \equiv \int d \mathrm{v} m_{j} \mathrm{v} s_{j}=0$ (source of momentum, zero for practical applications)
c. $\langle Q\rangle=\int Q f_{j} d v / n_{j}$
10. Similar procedure for energy equation yields

$$
\frac{\partial}{\partial t} \frac{1}{2} m_{j} n_{j}\left\langle v^{2}\right\rangle+\nabla \cdot \frac{1}{2} m_{j} n_{j}\left\langle v^{2} v\right\rangle-q_{j} n_{j} u_{j} \cdot \mathrm{E}=\sum_{k}^{\prime} \int \frac{m_{j} v^{2}}{2} C_{j k} d \mathrm{v}+S_{E j}
$$

11. a. Here $S_{E j} \equiv \int d v\left(m_{j} v^{2} / 2\right) s_{j} \quad$ (sources of energy, say due to rf).
b. Also, $k=j$ vanishes from collision term because of conservation of energy in like particle collisions

Plasma Bookkeeping

1. The moment equations can be written in more physical terms by introducing the random velocity and defining various physical quantities in addition to n_{j} and u_{j}.
2. The random velocity w : this is a change of independent variables from v to w defined by

3. By definition $d v=d w$ and $\langle w\rangle=0$
4. Then

$$
\begin{gathered}
\langle\mathrm{vv}\rangle=\left\langle u_{j} u_{j}+u_{j} w+w u_{j}+w w\right\rangle=\langle w w\rangle+u_{j} u_{j} \\
L=0 \quad L=0
\end{gathered}
$$

5. Define

$$
\left\langle\mathrm{m}_{j} \mathrm{n}_{j} w \mathrm{w}\right\rangle \equiv \overleftrightarrow{\mathrm{P}}_{j}=\mathrm{p}_{j} \overleftrightarrow{\mathrm{I}}+\overleftrightarrow{\mathrm{II}}_{j}
$$

where

$$
p_{j}=\frac{1}{3} n_{j} m_{j}\left\langle\omega^{2}\right\rangle
$$

$$
\stackrel{\rightharpoonup}{\Pi}_{j}=n_{j} m_{j}\left\langle\mathrm{ww}-\frac{1}{3} \omega^{2} \stackrel{\rightharpoonup}{\mathrm{I}}\right\rangle
$$

6. Similarly

$$
\begin{aligned}
&\left\langle v^{2}\right\rangle=\left\langle u_{j}^{2}+2 \mathrm{w} \cdot \mathrm{u}_{j}+\omega^{2}\right\rangle=u_{j}^{2}+\frac{3 p_{j}}{n_{j} m_{j}} \\
&\left\langle v^{2} \mathrm{v}\right\rangle=\left\langle\left(u_{j}^{2}+2 \mathrm{w} \cdot \mathrm{u}_{j}+\omega^{2}\right) \mathrm{u}_{j}+\left(\mathrm{u}_{j}^{2}+2 \mathrm{w} \cdot \mathrm{u}_{j}+\omega^{2}\right) \mathrm{w}\right\rangle \\
&-=0 \quad=0 \\
&=u_{\mathrm{j}}^{2} \mathrm{u}_{\mathrm{j}}+\frac{3 p_{j} u_{j}}{n_{j} m_{j}}+2 \frac{\mathrm{u}_{j} \cdot \overline{\mathrm{P}_{j}}}{n_{j} m_{j}}+\frac{2 \mathrm{~h}_{j}}{m_{j} n_{j}}
\end{aligned}
$$

where

$$
\mathrm{h}_{j} \equiv \frac{1}{2} n_{j} m_{j}\left\langle\omega^{2} \mathrm{w}\right\rangle
$$

is the heat flux, the flux of heat due to random motion.
7. Now define

$$
\begin{aligned}
& \int m_{j}\left(\mathrm{u}_{j}+\mathrm{w}\right) C_{j k} d \mathrm{v}=\int m_{j} \mathrm{w} C_{j k} d \mathrm{w} \equiv \mathrm{R}_{j k} \\
& \qquad \quad-=0 \\
& \int \frac{m_{j}}{2}\left(u_{j}^{2}+2 \mathrm{u}_{j} \cdot \mathrm{w}+\omega^{2}\right) C_{j k} d \mathrm{v}=\mathrm{u}_{j} \cdot \mathrm{R}_{j k}+\int \frac{\mathrm{m}_{j} \omega^{2}}{2} C_{j k} d \mathrm{w} \\
& \quad L=0
\end{aligned}
$$

$$
\equiv \mathrm{u}_{j} \cdot \mathrm{R}_{j k}+Q_{j k}
$$

where $\mathrm{R}_{j k}$ is the average momentum transferred due to unlike collisions and $Q_{j k}$ is the heat generated due to unlike collisions.
8. As they now stand, the moment equations can be written as

$$
\begin{aligned}
& \frac{\partial n_{j}}{\partial t}+\nabla \cdot\left(n_{j} \mathrm{u}_{j}\right)=s_{n j} \\
& \frac{\partial}{\partial t}\left(n_{j} m_{j} \mathrm{u}_{j}\right)+\nabla \cdot\left(n_{j} m_{j} \mathrm{u}_{j} \mathrm{u}_{j}\right)+\nabla \cdot \overrightarrow{\mathrm{p}}_{j}-q_{j} n_{j}\left(\mathrm{E}+\mathrm{u}_{j} \times \mathrm{B}\right)=\sum_{k}^{\prime} R_{j k}
\end{aligned}
$$

$$
\frac{1}{2} \frac{\partial}{\partial t}\left(n_{j} m_{j} u_{j}^{2}\right)+\frac{3}{2} \frac{\partial p_{j}}{\partial t}+\nabla \cdot\left[\frac{1}{2} n_{j} m_{j} u_{j}^{2} \mathrm{u}_{j}+\frac{3}{2} p_{j} \mathrm{u}_{j}+\mathrm{u}_{j} \cdot \stackrel{\mathrm{P}_{j}}{ }+\mathrm{h}_{j}\right]-q_{j} n_{j} \mathrm{u}_{j} \cdot \mathrm{E}=\sum_{k}^{\prime}\left(\mathrm{u}_{j} \cdot \mathrm{R}_{j k}+\mathrm{Q}_{j k}\right)+s_{E j}
$$

Algebraic simplification

1. Define the convective derivative, moving with the fluid

$$
\frac{d Q_{j}}{d t}=\frac{\partial \mathrm{Q}_{j}}{\partial t}+\mathrm{u}_{j} \cdot \nabla \mathrm{Q}_{j}
$$

2. Define the temperature

$$
T_{j}=p_{j} / n_{j}
$$

3. The mass equation is OK as is
4. Momentum equation simplifications:

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(n_{j} m_{j} \mathrm{u}_{j}\right)+\nabla \cdot\left(n_{j} m_{j} \mathrm{u}_{j} \mathrm{u}_{j}\right) \\
& =m_{j} n_{j} \frac{\partial \mathrm{u}_{j}}{\partial t}+m_{j} \mathrm{u}_{j} \frac{\partial n_{j}}{\partial t}+m_{j} \mathrm{u}_{j} \nabla \cdot\left(n_{j} \mathrm{u}_{j}\right)+m_{j} n_{j} \mathrm{u}_{j} \cdot \nabla \mathrm{u}_{j} \\
& =m_{j} n_{j} \frac{d \mathrm{u}_{j}}{d t}+m_{j} \mathrm{u}_{j} S_{n j}
\end{aligned}
$$

5. The momentum equation becomes

$$
m_{j} n_{j} \frac{d \mathrm{u}_{j}}{d t}+\nabla \cdot \overrightarrow{\mathrm{P}}_{j}-q_{j} n_{j}\left(\mathrm{E}+\mathrm{u}_{j} \times \mathrm{B}\right)=\sum_{k}^{\prime} R_{j k}-m_{j} \mathrm{u}_{j} S_{n j}
$$

6. Energy equation simplifications
a. $\frac{\partial}{\partial t} \frac{n_{j} m_{j} u_{j}^{2}}{2}+\nabla \cdot \frac{n_{j} m_{j} u_{j}^{2}}{2} \mathrm{u}_{j}=\frac{m_{j} n_{j}}{2} \frac{\partial}{\partial t} u_{j}^{2}+\frac{m_{j} u_{j}^{2}}{2} \frac{\partial n_{j}}{\partial t}+\frac{m_{j} u_{j}^{2}}{2} \nabla \cdot n_{j} u_{j}+\frac{m_{j} n_{j}}{2} u_{j} \cdot \nabla u_{j}^{2}$

$$
=\frac{m_{j} n_{j}}{2} \frac{d}{d t} u_{j}^{2}+\frac{m_{j} u_{j}^{2}}{2} S_{n j}
$$

b. $\frac{3}{2}\left(\frac{\partial p_{j}}{\partial t}+\nabla \cdot p_{j} u_{j}\right)=\frac{3}{2}\left(n_{j} \frac{\partial T_{j}}{\partial t}+T_{j} \frac{\partial n_{j}}{\partial t}+T_{j} \nabla \cdot n_{j} u_{j}+n_{j} u_{j} \cdot \nabla T_{j}\right)$

$$
=\frac{3}{2}\left(n_{j} \frac{d T_{j}}{d t}+T_{j} S_{n j}\right)
$$

c. Energy equation becomes

$$
\begin{aligned}
& \frac{m_{j} n_{j}}{2} \frac{d}{d t} u_{j}^{2}+\frac{3}{2} n_{j} \frac{d T_{j}}{d t}+\nabla \cdot\left(\mathrm{u}_{j} \cdot \overrightarrow{\mathrm{P}}_{j}+h_{j}\right)-q_{j} n_{j} \mathrm{u}_{\mathrm{j}} \cdot \mathrm{E}= \\
& \sum_{k}^{\prime}\left(\mathrm{u}_{j} \cdot \mathrm{R}_{j k}+Q_{j k}\right)+S_{E j}-\left(\frac{m_{j}}{2} u_{j}^{2}+\frac{3}{2} T_{j}\right) S_{n j}
\end{aligned}
$$

d. Note that $\mathrm{u}_{j} \cdot$ (momentum equation) is equal to

$$
\frac{m_{j} n_{j}}{2} \frac{d}{d t} u_{j}^{2}+\mathrm{u}_{j} \cdot \nabla \cdot \ddot{\mathrm{P}}_{j}-q_{j} n_{j} \mathrm{u}_{j} \cdot \mathrm{E}=\sum_{k}^{\prime} \mathrm{u}_{j} \cdot \mathrm{R}_{j k}-m_{j} u_{j}^{2} S_{n j}
$$

e. Now subtract (d) from (e)

$$
\frac{3}{2} n_{j} \frac{d T_{j}}{d t}+\nabla \cdot\left(\mathrm{u}_{j} \cdot \overrightarrow{\mathrm{P}}_{j}+h_{j}\right)-\mathrm{u}_{j} \cdot \nabla \cdot \overrightarrow{\mathrm{P}}_{j}=\sum_{k}^{\prime} Q_{j k}+S_{E_{j}}+\left(\frac{m_{j} u_{j}^{2}}{2}-\frac{3}{2} T_{j}\right) S_{n j}
$$

f. Note the following identity (recalling that by definition $P_{i j}=P_{j i}$)

$$
\begin{aligned}
\nabla \cdot(\mathrm{u} \cdot \overrightarrow{\mathrm{P}})-\mathrm{u} \cdot \nabla \cdot \overrightarrow{\mathrm{P}} & =\frac{\partial}{\partial x_{j}}\left(u_{i} P_{i j}\right)-u_{i} \frac{\partial}{\partial x_{j}} P_{i j} \\
& =P_{i j} \frac{\partial}{\partial x_{j}} u_{i} \\
& =\overrightarrow{\mathrm{P}}: \nabla \mathrm{u}
\end{aligned}
$$

g. The energy equation becomes

$$
\frac{3}{2} n_{j} \frac{d T_{j}}{d t}+\ddot{\mathrm{P}}_{j}: \nabla \mathrm{u}_{j}+\nabla \cdot h_{j}=\sum_{k}^{\prime} Q_{j k}+S_{E_{j}}+\left(\frac{m_{j} u_{j}^{2}}{2}-\frac{3}{2} T_{j}\right) S_{n j}
$$

7. Summary of fluid moments

$$
\begin{aligned}
& \frac{d n_{j}}{d t}+n_{j} \nabla \cdot \mathrm{u}_{j}=S_{n j} \\
& m_{j} n_{j} \frac{d \mathrm{u}_{j}}{d t}+\nabla \cdot \overrightarrow{\mathrm{P}}_{j}-q_{j} n_{j}\left(\mathrm{E}+\mathrm{u}_{j} \times \mathrm{B}\right)=\sum_{k}^{\prime} \mathrm{R}_{j k}-m_{j} \mathrm{u}_{j} S_{n j} \\
& \frac{3}{2} n_{j} \frac{d T_{j}}{d t}+\ddot{\mathrm{P}}_{j}: \nabla \mathrm{u}_{j}+\nabla \cdot \mathrm{h}_{j}=\sum_{k}^{\prime} Q_{j k}+S_{E_{j}}+\left(\frac{m_{j} \mathrm{u}_{j}^{2}}{2}-\frac{3}{2} T_{j}\right) S_{n j}
\end{aligned}
$$

8. Assuming the collisional terms are known, the fluid unknowns are $n_{j}, \mathrm{u}_{j}, \overrightarrow{\mathrm{P}}_{j}, T_{j}$, and h_{j}. (17 unknowns, 5 equations)
9. Even with a scalar pressure, there are still 9 unknowns.
10. The moment equations above are exact, if not particularly useful. They do, however, accurately describe both MHD and transport phenomena.
