
22.615, MHD Theory of Fusion Systems 
Prof. Freidberg  

Lecture 17: Stability of Simple Function 
 
Memory of the Energy Principle 
 

W 0δ ≥  for all displacements implies stability 
 

The potential energy is given by 
 
   F SW W W Wδ = δ + δ + δ V

  

 ( )
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2* *
F

0P

Q1
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2 ⊥ ⊥
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∫ ⊥  

 

 
22

S
0

1 B
W dS n n p

2 2⊥

⎛ ⎞
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∫  

 

 
W

2
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V

1 B
W dr , B B 0 n B

2 0
δ = ∇ × = ∇ ⋅ = ⋅ =

μ∫ 0  

 

        ( ) ( ) ( )
p

1 1
S

n B B n n n n B⊥ ⊥⋅ = ⋅ ∇ ⋅ ξ − ⋅ ξ ⋅ ⋅ ∇  

 
Only Appearance of  ξ

 

 
2

1
1

W p
2

δ = γ ∇ ⋅ ξ∫  

 

a. Minimizing condition : close ξ  as ( )0 B 0⎡ ⎤∇ ⋅ ξ = ⋅ ∇ ∇ ⋅ ξ =⎣ ⎦  

 
b. Possible if operator B ⋅ ∇  can be inserted. 

 

c. Not possible : symmetry B 0 B
B⊥ ⊥

ξ
⋅ ∇ ≡ ∇ ⋅ ξ = ∇ ⋅ ξ + ⋅ ∇ = ∇ ⋅ ξ  

 

d. Not possible : closed line case: ( ) ΒF p ,

Β

⊥

⊥

μ
φ ∇ ⋅ ξ

∇ ⋅ ξ = ∇ ⋅ ξ = ∇ ⋅ ξ =
μ

φ
 

 
Final Step: Intuitive Form of FWδ  
 

 ( ) ( )
2

2* *
F

0

Q1
W dr J Q rp p

2 ⊥ ⊥

⎡ ⎤
⎢ ⎥δ = − ξ ⋅ × + ∇ ⋅ ξ + ξ ⋅ ∇ ∇ ⋅ ξ
⎢ ⎥μ
⎢ ⎥⎣ ⎦

∫ ⊥      standard 
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a. 
2 22

Q Q Q⊥= +  

 

b. ( ) ( )* * *J Q b Q J J b Q⊥ ⊥ ⊥ ⊥ ⊥ξ ⋅ × = ξ × ⋅ + ξ ⋅ ×  

 

c. ( )b p
J J

B⊥
× ∇

= ×B p= ∇  

 

d. ( )Q b B⊥= ⋅ ∇ × ξ ×  

 

( )b B B B⊥ ⊥ ⊥= ⋅ ⋅ ∇ξ − ξ ⋅ ∇ − ∇ ⋅ ξ  

 

( ) 0B 2 p b
B⊥ ⊥ ⊥
μ

= − ∇ ⋅ ξ − ξ ⋅ κ + ξ ⋅ ∇ κ = ⋅ ∇b  

 
2. Substitute task 
 

         1        2         3    4            5 
  

      ( ) ( ) ( )
2

2 2 2 * *
F

0 0

Q1 B
W dr 2 p 2 p J b Q

2
⊥

⊥ ⊥ ⊥ ⊥ ⊥

⎡ ⎤
⎢ ⎥δ = + ∇ ⋅ ξ + ξ ⋅ κ + γ ∇ ⋅ ξ − ξ ⋅ ∇ κ ⋅ ξ − × ξ × ⋅⎢ ⎥μ μ⎢ ⎥⎣ ⎦

∫ ⊥  

 
1. line bending  0>
 
2. magnetic compression  0>

 
3. plasma compression  0>

 
4. pressure driven modes + or - 

 
5. current driven modes + or - 

 
Classes of MHD Instability 
 

1. Internal or fixed boundary: plasma surface is held fixed during perturbation: 

pS
n 0⊥⋅ ξ = , same as a conducting wall 

 
2. External or free boundary: plasma surface is allowed to move: n ⊥⋅ ξ ≠ 0 . Often 

the most severe stability criteria 
 

3. Current driven modes: also called kink modes.  is the most dominant 

destabilizing term. Modes driven by parallel current. Important in tokamaks, 
RFP: (K-S limit, saw tooth oscillations, disruptions). In general modes have 
long wavelength, low m, n. Cures: tight aspect ratio, low current, packed 
current profiles, conducting wall. 

J
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4. Pressure driven modes:  dominant destabilizing term. Special cases 

interchange or flute, following mode, sausage instability. Kaydoms criterion, 
mercuir criterion. Important in tokamak, RFP, stillaratio, EBT, mirror. In general 
long  wavelength, short 

pκ∇

⊥  wavelength. Cures: low β , shear, average 
formable curvature (min B, magnetic wall) 

 
Applications Today 
 

1.  pinch θ
 
2. Z pinch 

 
Procedure  
 

1. Sine equilibrium 0 00J ,B ,P  
 
2. Test in compressibility condition for ξ  

 
3. Minimize  with respect to Wδ ⊥ξ   

 
4. If  stable minWδ > 0

0

0

 
   unstable minWδ <
 
   marginally stable minWδ =
 

θ  Pinch 
 
1. Equilibrium: ( ) ( ) ( )zp r ,B r , J rθ  

  
        '

0 zJ Bθμ = −
 

       ( ) ( )2 2
z 0

0 0

B r B
p r

2 2
+ =

μ μ
 

 

2. Stability: ( ) ( ) m + kr r eι θ ι ξξ = ξ : Fourier analyze analog θ  and z 

 
3. Check compressibility 

 
 ( ) ( )zxe k⊥ ⊥∇ ⋅ ξ = ∇ ⋅ ξ + ∇ ⋅ ξ = ∇ ⋅ ξ + ι ξ ξ = ξ  

 

 Set 0 : OK if k 0
k ⊥
ι

∇ ⋅ ξ = ξ = − ∇ ⋅ ξ ≠   

 
4. Evaluate terms in  FWδ
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a. xb b e 0
z
∂

κ = ⋅ ∇ = =
∂

   no pressure driven terms 

 
b. 0 xJ J b J e e 0θ= ⋅ = ⋅ =   no current driven terms 

 
5. Conclusion: 
 

FW 0δ ≥    sum of positive terms 
 

sWδ = 0

0

   no surface currents 
 

vWδ ≥    positive term 
 
θ  pinch is stable at any value of β   
worst case:  W 0 as  k 0δ → →

 
Z Pinch 
 

1. Equilibrium: ( ) ( ) ( )zr ,B r , J rθρ  

 

( )'
0 z

rB
J

r
θμ =  

 

( )''

0

B
rB 0

r
θ

θρ + =
μ

  

 

2. Stability: ( ) ( ) m kzr r ι θ+ιξ = ξ  

 
3. Check incompressibility:  →θ

 

 
m

e
r⊥ ⊥θ

ι ξ
∇ ⋅ ξ = ∇ ⋅ ξ + ∇ ⋅ ξ = ∇ ⋅ ξ + ξ = ξθ  

 

 But 0 r r ok if m
m ⊥
ι

0ξ ξ − ∇ ⋅ ξ ≠∇ ⋅ =   

 
4. Evaluate terms in δ  FW
 

a. z zJ J b J e eθ= ⋅ = ⋅  no current driven terms 

 

b. re1
b b e e e

r rθ θ θ
∂

κ = ⋅ ∇ = + ⋅ ∇ = = −
∂θ

 

 

( ) ( ) ( )
* '

2* ' r
r r

2p
2 p 2 p 0 if p

r r⊥ ⊥

⎛ ⎞ξ
− ' 0ξ ⋅ ∇ ξ ⋅ κ = − ξ − = ξ < <⎜ ⎟⎜ ⎟

⎝ ⎠
 

destabilizing term 
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c. ( )1B B B B B⊥ ⊥ ⊥= ∇ × ξ × = ⋅ ∇ξ − ξ ⋅ ∇ − ∇ ⋅ ξ⊥  

 
 

  1r
mB B B mB

r
r r r r

θ θ θ θ θ θι ξ ξ ι
= ξ − + =B r  ξ

      1
mB

B
r

θ
⊥ ⊥

ι
= ξ  

1z z
mB

B
r

θι
= ξ  

 
2 2

2 2
1 z2

m B
B r

r
θ

⊥
⎡ ⎤= ξ − ξ⎢ ⎥⎣ ⎦

2  

 

d. ( )
'

' r r
r z

21
2 r k r

r r r⊥ ⊥
ξ ξ⎛ ⎞

∇ ⋅ ξ + ξ ⋅ κ = ξ + ι ξ − = + ι ξ⎜ ⎟
⎝ ⎠

zk  

 
2 '' '*2 22 2 2r r

z z zB 2 B r k kr kr
r r⊥ ⊥ θ

* r

r

⎡ ⎤⎛ ⎞ξ ξ⎛ ⎞ ⎛ ⎞ξ⎢ ⎥∇ ⋅ ξ + ξ ⋅ κ = + ξ + ι ξ − ι ξ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

 

 
e. ( )0 for m 0∇ ⋅ ξ = ≠  

 

( ) ( )
'

r
z

r
k for m

r

ξ
= + ι ξ = 0  

 

   
( ) ( ) ( ) (

2' *'2 2 'r 2 *z z
z r r

r k k
p p k r r m

r r r

⎡ ⎤
ξ ι ξ ι ξ⎢ ⎥ )0⋅ ξ = γ + ξ + ξ − ξ =⎢ ⎥

⎢ ⎥⎣ ⎦

γ ∇    

 
Examine m 0  ≠
 

2 '' '2 2 2 *'
2 2 2 22 *r r

F r r r z z z2
00

m B B1 2p
W dr r k kr kr

2 r r rr
θ θ

⎫
r

r

⎡ ⎤⎧ ⎛ ⎞ξ ξ⎛ ⎞ ⎛ ⎞⎪ ⎪ξ⎢ ⎥⎡ ⎤δ = ξ + ξ + ξ + + ξ + ι ξ − ι ξ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ μμ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎢ ⎥⎣ ⎦⎭
∫
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Minimize  FWδ
 

1. Note that  only appears algebraically: complete squares zξ
 
  terms: zξ

 

           ( )2k r0

a. 
'2 *2

22 *r r
z z z2

B m
k kr kr

r rr
θ

0

⎡ ⎤
⎢ ⎥⎛ ⎞⎛ ⎞ ξ ξ⎛ ⎞⎢ ⎥+ ξ + ι ξ − ι ξ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟μ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

 

b. 
2 2' '2 2 2 2

0 r r
z 2

0 0

B k kr k r
r rk k

θ
4

0

⎡ ⎤
ξ ξι ⎛ ⎞ ⎛ ⎞⎢ ⎥ξ −⎜ ⎟ ⎜ ⎟⎢ ⎥μ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

 

c. Choose 
'

r
z 2

0

ikr
rk

ξ⎛ ⎞
ξ = ⎜ ⎟

⎝ ⎠
 minimizing condition 

 
2. Then ( )rξ ≡ ξ  

 

  

2

2 2 2

2'2 2 ' 2
2 20

F 2 2
0 0

m

m k r

m B 2 p1 k
W dr B r 1

2 r rr k
θ

θ

+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎛ ⎞ ⎛μ ξ⎛ ⎞⎢ ⎥δ = ξ + + −⎜ ⎟ ⎜⎜ ⎟⎢ ⎥⎜ ⎟ ⎜μ ⎝ ⎠⎝ ⎠ ⎝⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∫
⎞
⎟⎟
⎠

 

 
2'2 2 ' 2 2

2 0
F 2 2 2 2

0

m B 2 p m B1
W dr r

2 rr m k r
θ θ

⎡ ⎤⎛ ⎞μ ξ⎛ ⎞⎢ ⎥δ = ξ + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥μ + ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦
∫ r

 

  
     only appearance of k 
 

3. k appears only in a satisfying term this term is minimized by choosing  
 

 2k →∞
 
4. Then  

 
2 2 '

2 0
F 2

0

m B 2 p1
W dr

2 rr
θ

⎛ ⎞μ
δ = ξ +⎜ ⎟⎜ ⎟μ ⎝ ⎠

∫  
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5. Stability condition 
 

 
2 2

0

m B
rp '

2
θ− <

μ
     

 
 
 
 

6. Simplify using equil relation ( )0
B

p ' rB ' 0
r
θ

θμ + =  

 

( )
' '

2 2B B
B rB ' B r r B 2B

r r
θ θ

θ θ θ θ
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2
θ+  

 

 or 

' '2 2
2B rB

r B
2 2
θ θ

θ

⎛ ⎞ ⎛ ⎞
= + = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

2B
2
θ  

 
7. Then 
 

 (
'2

2Br 1
m 4

B r 2
θ

θ

⎛ ⎞
< −⎜ ⎟

⎝ ⎠
)    (1) 

 
 or 
 

 
( ) (

'2
2

2

rB 1
m 1

2B

θ

θ

< − )    (2) 

 
8. Typical profile 
 

 
 
 
 From (1)    stability for m   2≥
 
 
 From (2)     instability for m=1  near small r, k   ∞  
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9. Physical Mechanism 
 

  
 
Examine m=0 
 

1. 
2 '' '*

22 2 *r r
F z z

0

1
W dr B r k kr kr

2 r rθ

⎧ ⎡ ⎤⎛ ⎞ξ ξ⎛ ⎞ ⎛ ⎞⎪ ⎢ ⎥δ = + ξ + ι ξ − ι ξ⎜ ⎟⎨ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟μ ⎝ ⎠ ⎝ ⎠⎪ ⎝ ⎠⎢ ⎥⎣ ⎦⎩
∫ r

z r
ξ

 

( ) ( ) ( )
2' '*'2 2'r 2 * 0z r

0 z r r
r 2 pk k

p k r r
r r r r

⎡ ⎤ ⎫ξ μι ξ ι ξ
r

⎪⎢ ⎥+μ γ + ξ + ξ − ξ + ξ ⎬⎢ ⎥ ⎪⎭⎢ ⎥⎣ ⎦

 

 
 Note again that  only appears algebraically: complete squares. zξ
 
2.  terms: zξ

 

a. ( ) ( )
( )

' **
r22 2 2 r

0 z 0 z

r
k B p B r p k c.c.

r rθ θ

⎡ ⎤ξ⎛ ⎞ξ⎢ ⎥+ μ γ ξ + + μ γ ι ξ +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 

b. ( )
( )

( )

2
''

r2 r
20 ''

r2 2 r
0 z 02 2

0 0

r
B r p

r r r1
B p k B r p

r rB p B p

θ

θ θ
θ θ

⎡ ⎤ξξ⎛ ⎞⎢ ⎥ι + μ γ⎜ ⎟⎢ ⎥⎝ ⎠ ξξ⎛ ⎞⎣ ⎦+ μ γ ξ − − + μ γ⎜ ⎟
+ μ γ + μ γ ⎝ ⎠

 

 
3. Only appearance of  is in a stabilizing term. zξ Wδ  is minimized by choosing 

( )
( )''

r2 r
z 02

0

r
B r p

r rk B p
θ

θ

⎡ ⎤ξξι ⎛ ⎞⎢ ⎥δ = + μ γ⎜ ⎟⎢ ⎥⎝ ⎠+ μ γ ⎣ ⎦
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4.  becomes ( )  FWδ iξ ≡ ξ

 

 
( )'' * *2' 22 2 '0

F 2
0

2 p1
W dr B

2 r rr
θ

⎡ ⎤ξ ξ + ξ ξ⎧ ξμ⎪ ⎢ ⎥δ = ξ + ξ + −⎨ ⎢ ⎥μ ⎪⎩ ⎢ ⎥⎣ ⎦
∫  

 

   
( )'' * *2

2'
0 2
p

rr

⎡ ⎤ξ ξ + ξ ξξ⎢ ⎥+γμ ξ + −⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

   ( ) ( )
2

2 ' 2
0 02

0

1
B p B p

rB p
θ θ

θ

⎫ξ ⎪− + μ γ ξ − − μ γ ⎬
+ μ γ ⎪⎭

 

 

( )222'
02 20

02 2
0 0

B p2 p1
dr B p

2 r r B

θ
θ

θ

⎧ ⎡ ⎤− μ γξμ⎪ ⎢ ⎥= ξ + + μ γ −⎨ ⎢ ⎥μ + μ γ⎪ ⎢ ⎥⎣ ⎦⎩

∫ p
 

 

 ( )
'' * *

2 2
0 0p B Bθ θγ − + p

r
ξ ξ + ξ ξ ⎡ ⎤+ μ − μ γ⎣ ⎦  

 

}( ) 
2' 2

0 0 p⎡ ⎤+ ξ μ γ⎣ ⎦
2B p Bθ θ+ γμ − −  

 
5. Thus: 
 

2 2
' 0

F 02 2
0 0

4 pB1
W dr 2 rp

2 r B
θ

θ

⎡ ⎤ξ μ γ
δ = μ +⎢ ⎥

μ p+ μ γ⎢ ⎥⎣ ⎦
∫  

 
6. Stability condition 
 

2'

2
0

2 Brp
p p B

θ

θ

γ
− <

μ γ +
  

 
 Instability criterion usually violated in experiments. For Benneth profiles we 

require 2γ >  for stability 
 
 Instability: 
 

a. competition between increased magnetic pressure and increased particle 
pressure 
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b. sausage instability 
 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 plasma pushes back less (3 degrees of freedom) than magnetic 
 
 pressure compresses plasma (2 degrees of freedom) 
 
c. Stability boundary is independent of k 
 
d. Mode is catastrophic experimentally. 

 
e. Can be stable theoretically if p’ is weak enough. However, reliance on “ γ ” is 

suspicious. Not easily stabilized experimentally 
 
Conclusion 
 
 pinch stable θ
 
 z pinch unstable 
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Single Particle Picture  why does curvature enter? 
 
 Consider m=0 mode 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

1. Calculate drifts 
 

'2 2

B z z2 3
c

2B Bv mv mvB B 1
V B e

2 2e 2r 2eB B
θ θ⊥ ⊥

∇ θ
θ θ

× ∇
= = − ⋅ = −

ω

2

2
e

B
⊥  

 
2 22

zr
z

c r

mv mve ev B
V e

B er B e B
⊥

κ
θ θ

×κ ×
= − = =

ω
 

 

2. Assume isotropic plasma 
2

2 2v
v v  

2
⊥= =

 

  
'22 2

'
0 2 2

B Bmv mv
v B

r reB eB
θ θ

θ
θ θ

⎛ ⎞ ⎛ ⎞
= − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

r  

 

In most profiles 
'

D
B

0 : v
r
θ⎛ ⎞

<⎜ ⎟
⎝ ⎠

 is in same direction as curvature drift. 
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Curvature drift creates E B×  drift which enhances perturbation 
 
If the curvature drift is in the opposite direction, E B×  drift would oppose the 
perturbation  stability →
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Summary 
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